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Abstract
Nowadays large scale enterprise applications are adopting microservice architectures in
order to improve scalability, agility and flexibility which are in stark contrast to a mono-
lithic architecture. The benefit of easy and dynamic scaling comes at the cost of a more
complex, distributed system containing many interacting components (microservice).
While each component is intended to do just one thing, the complexity of the architecture
moves from the component layer to the interconnect layer.
A common platform for operating microservice architectures in production environments

is Kubernetes (k8s) [28], a container orchestrator organizing one or more containers into
pods and additionally providing a common set of control routines managing their states.

The focus of this thesis is to establish a proof of concept system which provides an insight
into the communication between pods by collecting network flows on a per-pod basis and
persisting them on an Elasticsearch [1] database for future visualisation and analysis with
Kibana [2].
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1 Introduction
Nowadays, large scale enterprise applications are embracing microservice architectures
intending to improve scalability, agility, and flexibility. Comparing this approach with a
classic three-tier architecture, complexity shifts from the application to the interconnect
layer. While several tools are assisting the operation of microservices, concepts presented
in this thesis will focus on Kubernetes (k8s) [28].
The presented proof of concept with the project name Insight will be a platform helping

to get an insight into the networking layer of k8s.

1.1 Current Network Monitoring Technologies For Kubernetes
There is a large number of metrics that can be retrieved from k8s itself, its underlying
container runtime, external load balancers and more. An often seen open-source approach
is scraping and storing the metrics with Prometheus and visualizing them with Grafana
[51]. General network metrics such as the currently used bandwidth can be retrieved
but network flows containing source and destination alongside traffic statistics facing the
endpoints are not provided and cannot be stored with the mentioned toolsets. While there
are other open-source, free-to-use and commercial monitoring systems for k8s available,
as of December 2019, none of them support monitoring network flows inside the cluster.
A recent approach for microservices is a service mesh based on a protocol proxy server

deployed next to the microservice handling e.g. HTTP request routing while collecting
metrics.

1.2 Motivation
The objective of this thesis is to collect network flows between microservices, store them
inside an Elasticsearch [1] database, join extracted flows with metadata retrieved from the
k8s API and internal systems and match correlating flows based on a unique identifier. The
data format should be compatible with the Security Information and Event Management
(SIEM) view shipped with Kibana [2], assisting an end-user to analyze collected flow data.
In comparison to metric based network monitoring, flow based network monitoring

aggregates network utilization for each communication participant and not for a single
network interface. This additional information allows validation of several high level ap-
plications such as service meshes and load balancing. The system also allows to identify
hardware issues such as overloaded routers which are dropping packets to specific des-
tinations. A metric based monitoring would show dropped packets but the flow based
monitoring allows a root cause analysis by identifying failing connections.

1.3 Organization
1.3.1 Chapter 1: Introduction
The first chapter introduces the concept of a flow monitoring system and highlights the
motivation.
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1 Introduction

1.3.2 Chapter 2: Technical Background
The second chapter starts by introducing the flow terminology and required background
on container based systems and k8s with a focus on networking. In addition, components
of the ELK-Stack, PostgreSQL and Memcached are introduced.

1.3.3 Chapter 3: Use Case Discussion
Chapter three discusses possible use cases for flow monitoring and lists the resulting re-
quirements for the platform.

1.3.4 Chapter 4: Platform Design
Chapter four presents a platform design meeting the requirements of the requrement anal-
ysis in the previous chapter. It starts with a high level architecture before highlighting
details of each component.

1.3.5 Chapter 5: Implementation
The fifth chapter explains the implementation based on the platform design.

1.3.6 Chapter 6: Evaluation
The working proof of concept is evaluated first on a theoretical aspect discussing scalability,
known issues and security and then based on its performance in simulated test scenarios.

1.3.7 Chapter 7: Conclusions & Future Work
The last chapter concludes the thesis and introduces potential fixes for an improved proof
of concept or production system.
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2 Technical Background

2.1 Flow Definition
A unidirectional network layer flow, is a sequence of Internet Protocol (IP) packets from a
source computer to a destination computer [59]. Its direction can be represented as tuple
(IPsrc, IPdst) where IPsrc is the source and IPdst the target.
Furthermore, the direction of the flow at the transport layer, bringing in a port/type

based protocol, can be represented as an unordered tuple where Psrc and Pdst describe
additional parameters of the transport protocol:

〈
(IPsrc, Psrc) , (IPdst, Pdst)

〉
(2.1)

A bidirectional transport layer flow with traffic statistics can be visualized as a graph and
is further referred to as flow:

Figure 2.1: Bidirectional Flow As Graph

Weight attributes packets and bytes contain traffic statistics differentiated for source
to destination and destination to source.

2.1.1 Flow Hashing
When searching for correlating flows, source and destination endpoints can be swapped.
This issue is addressed by assigning flows with swapped endpoints, a unique identifier.
Flow hashing implements the desired behavior by computing a hash based on the flow

endpoints. A hash collision on swapped endpoints takes away the direction of the flow.

h

(〈
(IPsrc, Psrc) , (IPdst, Pdst)

〉)
⇔ h

(〈
(IPdst, Pdst) , (IPsrc, Psrc)

〉)
(2.2)

2.2 Linux Containers
Nowadays, containers are becoming a popular way of packaging and running applications
reliably by abstracting the userspace. They ship as standardized container images [48]
providing application executables alongside required runtime resources such as shared
libraries. Containers do not use a hypervisor for creating an isolated view on the system
but handle the isolation at the Linux Kernel layer. As seen in Figure 2.2, container isolation
has fewer components than hypervisor virtualization resulting in less runtime overhead

3



2 Technical Background

Figure 2.2: Container Hypervisor Comparison

[38]. Besides, the application footprint is smaller and the startup time decreases since
the application does not require booting a new kernel. In this thesis when referring to
a container, a group of processes isolated by control groups (cgroups), capabilites
and Linux namespaces is referred to.

2.2.1 Process Isolation Using Linux Namespaces
Linux namespaces isolate processes, changing their view on the system by logically dividing
their kernel space into multiple environments [17]. The kernel implements several names-
paces including mount namespaces, Inter Process Communication (IPC) namespaces, Pro-
cess Identifier (PID) namespaces, Unix Time Sharing (UTS) namespaces, network names-
paces and user namespaces. User, mount and PID namespaces isolate a container from its
host by building a sandbox where processes placed in it have one or more separate users,
a separate file system and can only see processes running in the shared PID namespace.
The IPC, network and UTS namespaces further secure the sandbox. While these are the
base of container isolation, there are several other kernel namespaces enhancing isolation
and security of the container sandbox.

2.2.2 Resource Limitation Using Control Groups
An everyday usage pattern is the limitation of CPU and memory utilization by the con-
tainer so a single one cannot exhaust all system resources. With cgroups, the Linux Kernel
brings a functionality to control hardware resources assigned to a group of processes. In
comparison to ulimit and rlimit, it provides a more fine-grained control over e.g. CPU
time, memory usage, input-output operations or network priority [7]. The configuration is
done via a virtual filesystem mounted to /sys/fs/cgroup.

2.2.3 Restricting Root Privileges
While traditional UNIX implementations differentiate between unprivileged and privileged
users, latter bypassing all kernel permission checks, Linux introduced with version 2.2

4



2.2 Linux Containers

the concept of capabilities [6]. The described capabilities implement an additional
authorization layer for distinct kernel calls (Table 2.1), which cannot be bypassed. A
process in a container, without further configuration, runs as root. Linux capabilities,
more precisely the lack of them for processes running inside the container, are used to
address this issue and remove privileges from the container root user.

Capability Behavior
CAP_NET_RAW Use Packet and RAW sockets
CAP_SETUID Change the user id of a running process
CAP_SYS_BOOT Reboot the system or load a new kernel
CAP_SYS_TIME Set the system or hardware clock

Table 2.1: Selection of Linux Capabilities [6]

2.2.4 Network Isolation
Linux network namespaces are used for isolating networking. Every network namespace
gets its own isolated network devices, routing table and firewall, thus isolating the con-
tainer from the host. Populating the routing table and network interfaces placed in the
container depends on the used Container Network Interface (CNI) implementation. When
provisioning a container, the network namespace is created and passed to a plugin for fur-
ther configuration. Replicating the described process is straightforward using iproute2
(Listing 2.1). After creating the network namespace, the container runtime calls a CNI

1 # Create a container network namespace named purple
2 $ ip netns add purple
3 # Execute a command in the purple network namespace
4 $ ip netns exec purple ip a
5 1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
6 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

Listing 2.1: Creating a linux network namespace

plugin hooking in and e.g. creating a virtual ethernet pair [33] moving one side to the
container network namespace establishing a pipe between container and host. Now IP
addresses can be assigned to each interface. A real CNI plugin relies on an IP Address
Management (IPAM) system for retrieving an IP address (Listing 2.2).

5



2 Technical Background

1 # Create a virtual ethernet pair
2 $ ip link add hostside0 type veth peer name containerside0
3 # Move one side to the container network namespace
4 $ ip link set containerside0 netns purple
5 # Assign IP addresses, routing table will be populated
6 $ ip netns exec purple ip addr add 172.16.0.2/24 dev containerside0
7 $ ip addr add 172.16.0.1/24 dev hostside0
8 # Set the interface states to UP
9 $ ip link set hostside0 up

10 $ ip netns exec purple ip link set containerside0 up
11 $ ip netns exec purple ip link set lo up
12 # View the IP configuration
13 $ ip netns exec purple ip addr show
14 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group ...
15 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
16 inet 127.0.0.1/8 scope host lo
17 valid_lft forever preferred_lft forever
18 inet6 ::1/128 scope host
19 valid_lft forever preferred_lft forever
20 16: containerside0@if17: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc ...
21 link/ether 9e:63:59:29:53:78 brd ff:ff:ff:ff:ff:ff link-netnsid 0
22 inet 172.16.0.2/24 scope global containerside0
23 valid_lft forever preferred_lft forever
24 inet6 fe80::9c63:59ff:fe29:5378/64 scope link
25 valid_lft forever preferred_lft forever
26 # Show routing tables (container & host)
27 $ ip netns exec purple ip route show
28 172.16.0.0/24 dev containerside0 proto kernel scope link src 172.16.0.2
29 $ ip route show
30 default via 2.56.96.1 dev ens3 proto static metric 100
31 2.56.96.0/22 dev ens3 proto kernel scope link src 2.56.99.19 metric 100
32 10.10.0.0/16 dev cni0 proto kernel scope link src 10.10.0.1
33 172.16.0.0/24 dev hostside0 proto kernel scope link src 172.16.0.1

Listing 2.2: Example CNI initializing container networking

6



2.3 Kubernetes

2.2.5 Building Container Images

1 # Import the base image
2 FROM golang:1.13-alpine as builder
3

4 WORKDIR /app
5 copy . .
6

7 # Build application
8 RUN go get -d -v ./...
9 RUN go build cmd/probeinject/probeinject.go

10

11 # Generate a smaller docker image without build dependencies
12 FROM alpine:3.11
13

14 # Copy built binary
15 COPY --from=builder /app/probeinject /probeinject
16 ENTRYPOINT ["/probeinject"]

Listing 2.3: Dockerfile example

A container image, as specified by the Open Container Initiative [48] can be built in
several ways. Docker [46] introduced the Dockerfile, a file describing the building blocks
of a container image (refer to Listing 2.3 as example). Starting with a base, every instruc-
tion in the Dockerfile creates an additional layer merged with the previous layers. The
layering helps to cache and reuse executed instructions and lowers the total footprint of
an application, as e.g. the base layer can be reused by several images.

2.3 Kubernetes
Kubernetes (k8s) is a borg [61] inspired set of interconnected services working together
as a container orchestrator [25]. Viewed from a high-level perspective k8s tries to build
and maintain a desired state persisting of a set of objects (resources). K8s ships with a
predefined set of resource types and adds the option of providing new resource types in
the form of a Custom Resource Definition (CRD) [25].

2.3.1 Resource Definitions
The state of an object inside k8s is commonly described in the YAML Ain’t Markup
Language (YAML) [24] which is a superset of JavaScript Object Notation (JSON) [3]
including a more human friendly reading and writing experience alongside with comments.
Resources can be split into five categories [27]:

• Workload manage runtime components (actual running processes)

• Discovery and load balancer resources define the connection from the outside
and between containers

• Cluster resources contain the cluster configuration

• Config and Storage resources are used for persisting data and injecting data into
applications

7



2 Technical Background

• Metadata resources define the behaviour of other resources
Every resource is described by three Resource Objects [27]:

• Resource ObjectMeta

• ResourceSpec

• ResourceStatus.
The Resource ObjectMeta inhabits the apiVersion: attribute defining the target Ap-

plication Programming Interface (API) path supplemented by kind: defining the resource
type. In addition, the context of a resource is described in the Resource ObjectMeta, using
the metadata: field. Depending on the kind: attribute, different fields have to be included
as ResourceSpec. A common pattern is e.g. the spec: or data: attribute. Refer to List-
ing 2.4 for an example. k8s stores the current state of a resource in the ResourceStatus
identified by the status: field. All resources in k8s can be created, updated (replaced or
patched), read and deleted using the k8s API.

2.3.2 Namespaces, Labels and Annotations
Some resources of k8s can be placed in a namespace defined by the metadata.namespace:
attribute. Next to the assigned unique identifier, metadata.namespace: and metadata.name:
are unique for each resource type. The k8s metadata fields contain metadata.labels: and
metadata.annotations:. Annotations allow to persist any additional configuration de-
tails for an object while labels help grouping related resources. Labels are also used as
filter criteria when talking to the API.

2.3.3 Pod As Atomic Unit
The smallest runtime component of k8s is called a pod [26]. It models an "application-
specific logical host" [26] containing one or more containers scheduled in a shared context.
This context includes a shared namespace including a common network namespace access
to shared volumes. In difference to a single Linux container, multiple containers defined in
a pod can use IPC [52] and also communicate over a shared localhost. This tight coupling
allows e.g. the vertical integration of selected components of a Linux Apache MySQL PHP
(LAMP) Stack [58] Listing 2.4.
A pod is the only ephemeral resource in k8s, e.g. if the physical machine where the pod

is running on crashes, k8s does not recreate the pod and deletes it instead.

2.3.4 Architecture
Components of k8s can be split into the Control Plane and Kubernetes Nodes.

The Control Plane consists of several microservices all interfaced by the
kube-api-server which itself provides the API and acts as the frontend for k8s. Kuber-
netes components are stateless and use the kube-api-server to persist cluster-state inside
etcd, a distributed key-value store [9]. The kube-scheduler is responsible for assigning
a pod to a node and the kube-controller-manager runs essential control loops watch-
ing the cluster-state and taking actions if needed. If k8s runs in a cloud environment, the
cloud-controller-manager interacts with the cloud provider and provisions e.g. volumes
and load balancers.

Kubernetes Nodes are either a virtual or physical computer running Linux. On top
of the operating system, the kubelet interacts with a Container Runtime Interface (CRI)
and runs pods on the node. The kube-proxy manages networking rules and is discussed
in Section 2.3.9.
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2.3 Kubernetes

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: test
5 labels:
6 app: test
7 spec:
8 containers:
9 - name: php-component

10 image: some-php-image
11 ports:
12 - containerPort: 9000
13 name: fastcgi
14 - name: apache
15 image: apache
16 ports:
17 - containerPort: 80
18 name: http

Listing 2.4: k8s Example Pod Definition

2.3.5 Configuration And Secret Management
To ease configuration and secret management, k8s comes with the ConfigMap and Secret
resource type. Both can be mounted in a container filesystem or fill environment variables
(Listing 2.5). The difference between a ConfigMap and a Secret is the sensitivity of the
data. A Secret is intended to contain sensitive information including passwords, ssh keys
or certificates and can be managed as an opaque object avoiding secret leakage while
querying the API [27].

2.3.6 Pod Management
k8s serves the role of an container orchestrator by providing several workload controllers
used to guarantee application availability by creating or destroying pods. A Microservice
can be provided in the form of a k8s Deployment containing a pod template. The De-
ployment manages a ReplicaSet which itself is creating and destroying pods in order to
maintain a desired state (e.g. five running instances). After updating the Deployment, the
active ReplicaSet scales down to 0 instances while a new one gets created. Pod templates
are passed to the ReplicaSets. Dynamic scaling of the ReplicaSets allows rollbacks to older
revisions of a Deployment [27].
If a pod is managed by a ReplicaSet, it contains the field metadata.ownerReferences:

with an entry mapping the ReplicaSet Listing 2.6. The ReplicaSet Listing 2.7 itself is
owned by a Deployment Listing 2.8.
Apart from Deployments there are other resource types managing pods such as a

DeamonSet scheduling one pod on every node or the StatefulSet extending a Deployment
with persistent data.

2.3.7 Interacting With The API
The k8s API can be accessed using the secure Hypertext Transfer Protocol (HTTPS).
While not being required, the default configuration authenticates clients using a Certificate
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2 Technical Background

Figure 2.3: Kubernetes Components [26]

Request [57] and manages permissions using a Role Based Access Control (RBAC) [39].
Workload resources as described in Section 2.3.1 are grouped by the Namespace stated in
the metadata field. By sending requests to specific paths, e.g. /api/v1/pods, resources
can be created udpdated or deleted using Hypertext Transfer Protocol (HTTP) POST,
UPDATE or DELETE operations.
Authentication to the API inside the cluster requires so-called ServiceAccounts. Being

generated for every namespace, assigned certificates get injected to every container in a
pod. However, it is possible to create a custom ServiceAccount with extended permis-
sions, e.g. creating pods. The API client used in this thesis is the official client-go [14].
When running inside a pod, client-go authenticates against the API using the provided
ServiceAccount.

2.3.8 Patching Resources Before Creation
Extending the API functionality of k8s is possible by using the builtin Dynamic Admission
Control. When configured, a web hook facing an HTTPS endpoint will be used to query
an external controller which is either validating or mutating.
When utilizing a validating controller, the ValidatingWebhookConfiguration describes

when the web hook needs to be triggered and where it is reachable alongside the server’s
Transport Layer Security (TLS) certificates.
In case the controller is intended to be mutating, a MutatingWebhookConfiguration con-
taining the same information needs to be used instead.
Contrasted to a validating controller, a mutating controller can not only allow/deny

the creation of a resource but alternately modify it before it gets persisted to disk. The
requested change can be transmitted using a JSON patch [4]. It is e.g. possible to add a
label to the metadata field as shown in Listing 2.9.

2.3.9 Networking In Kubernetes
Interconnecting pods and cluster-networking is a central part in k8s and can be divided
into four categories:

1. container to container networking (shared network namespace, refer to Section 2.3.3)

2. pod to pod networking (covered in this section)
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2.3 Kubernetes

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: test
5 spec:
6 containers:
7 - name: needs-secret-and-env
8 image: test
9 envFrom:

10 - configMapRef:
11 name: bar-configmap
12 volumeMounts:
13 - name: foo
14 path: "/foo"
15 volumes:
16 - name: foo
17 secret:
18 secretName: foo-secret

Listing 2.5: k8s Example Pod definition mounting a secret and getting environment variables from
a ConfigMap

3. pod to Service networking (refer to Section 2.3.10)

4. External to Service networking (refer to Section 2.3.10)

Every pod in k8s gets a cluster-unique IP address assigned and can communicate with
all pods running on any node without requiring Network Address Translation (NAT)
[37]. Alongside every k8s agent (e.g. the kubelet) and system daemons can access pods
running on the same node. It is also possible to schedule a pod in the host network
namespace instead of an encapsulated environment. Having one IP per pod eliminates
conflicts resulting from port exhaustion (two services listening on the same port).
The networking component does not ship with k8s directly; instead, several CNI plugins

implement the described network model. This diversity allows customized performance and
feature tuning for different cloud providers and bare metal. Some CNI plugins also bring
support for NetworkPolicies describing firewall rules between pods. The CNI plugin also
maintains the Node to Node communication [29]. This thesis is using Flannel [47] as a
CNI plugin, which abstracts connection to different nodes using an overlay network [54]
based on VXLAN [53].

2.3.10 Kubernetes Service
Pods are short-lived in k8s thus addressing an application by the pod IP is inconvenient
and only a temporary solution. In k8s this issue is addressed by a Service. A service
targets a group of pods and distributes the load across them. It is represended by a stable,
unique IP address called ClusterIP. Requests to the ClusterIP are redirected to one of the
pods implementing a load balancer. Each service can either be User Datagram Protocol
(UDP) [60] or Transmission Control Protocol (TCP) for a single IP family.
A service is cluster internal, but can be exposed by using the type NodePort.This type

redirects a set of TCP or UDP ports on each k8s node to the ClusterIP. In cloud en-
vironments, the type load balancer leads to an external load balancer placed in front
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1 apiVersion: v1
2 kind: Pod
3 metadata:
4 ...
5 name: insight-staging-postgres-7dc9594b7d-59f7h
6 namespace: insight-staging
7 ownerReferences:
8 - apiVersion: apps/v1
9 blockOwnerDeletion: true

10 controller: true
11 kind: ReplicaSet
12 name: insight-staging-postgres-7dc9594b7d
13 uid: d7705630-2140-4b42-a338-56f3b9e5401e
14 resourceVersion: "35434435"
15 uid: 2446eeae-21fa-4e91-8b75-2351f4ad1f4c
16 spec:
17 ...
18 status:
19 ...

Listing 2.6: pod with owner reference

of the NodePorts. It is common to have one public-facing HTTP/HTTPS service while
keeping everything else internal. Often seen is SSL offloading to the external load balancer.

In a classic k8s installation, services are implemented using a combination of iptables
rules configured by the kube-proxy. The kube-proxy maintains an up-to-date list of possi-
ble target pods for each service and creates, updates and deletes iptables rules accordingly
[26].

Requests facing the ClusterIP are redirected to a target in a round-robin manner. The
NAT is efficiently realized at the Kernel layer and shows up in the conntrack table.

A current development of k8s in alpha state is an IP Virtual Server (IPVS) based service
proxy which will support more complex load balancing algorithms such as shortest delay
expected [50, 26].

2.4 Capturing Network Packets
A socket describes an endpoint for data communication between the Linux kernel- and
userspace. The domain argument passed on socket creation defines the protocol used for
communication [22]. While domains like AF_INET is designated to IPv4, the AF_PACKET
domain captures all ethernet frames on a specified port.

Libpcap, the underlying library of tcpdump, implements an API for intercepting network
traffic [23]. Having Linux as target system, an AF_PACKET socket is used for capturing
ethernet frames. In this thesis, Gopacket [31], a Golang library based on libpcap is used
for parsing captured ethernet frames to the different protocol layers.
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1 apiVersion: apps/v1
2 kind: ReplicaSet
3 metadata:
4 ...
5 name: insight-staging-postgres-7dc9594b7d
6 namespace: insight-staging
7 ownerReferences:
8 - apiVersion: apps/v1
9 blockOwnerDeletion: true

10 controller: true
11 kind: Deployment
12 name: insight-staging-postgres
13 uid: 16e7d01d-d3ba-4cc6-af02-6757a8ff7b94
14 resourceVersion: "35434437"
15 uid: d7705630-2140-4b42-a338-56f3b9e5401e
16 spec:
17 replicas: 1
18 ...
19 status:
20 availableReplicas: 1

Listing 2.7: Deployment with owner reference

Domain Description
AF_UNIX Local communication
AF_INET IPv4 internet protocol
AF_INET6 IPv6 internet protocol
AF_PACKET Low-Level packet interface

Table 2.2: Selection of supported Linux socket domains [22]

2.5 ELK-Stack
2.5.1 Elasticsearch
Elasticsearch is a distributed, document-based database focused on scalability and perfor-
mance [5]. It is designed to hold a variety of data, including but not limited to logs and
system metrics. After first normalizing and indexing documents, they can be queried and
aggregated using a JSON based query language [5]. It relies on an inverted index [62] as an
underlying data structure allowing performant near-real-time queries and aggregations.

2.5.1.1 Logical Layout

A JSON based document in Elasticsearch consists of fields with specific types:

1. object, nested

2. atomic types e.g. IP, keyword, long

Documents with a common type schema, further referred to as mapping, are stored within
a common Index [5]. The mapping can be determined automatically or set for a specific
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1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 ...
5 generation: 1
6 name: insight-staging-postgres
7 namespace: insight-staging
8 resourceVersion: "35434438"
9 uid: 16e7d01d-d3ba-4cc6-af02-6757a8ff7b94

10 spec:
11 replicas: 1
12 selector:
13 matchLabels: ...
14 template:
15 metadata:
16 creationTimestamp: null
17 labels: ...
18 spec:
19 containers:
20 - image: postgres:12.1-alpine
21 imagePullPolicy: IfNotPresent
22 name: postgres
23 ....
24 status:
25 availableReplicas: 1

Listing 2.8: k8s Deployment

index. It also allows for dynamic fields which can be present in one document but not
another.

2.5.1.2 Physical Layout

Elasticsearch is usually run in a clustered environment consisting of many nodes. An
Elasticsearch node can have one or more of the following node-types:

• master-eligible nodes can be elected as master

• data nodes hold data and perform related operations

• ingest nodes execute pre-processing pipelines

• machine learning nodes run machine learning related operations

When using n master nodes, at least dn
2 e have to be available for the cluster to function,

thus preventing a split-brain scenario [5].
An index can be split into multiple shards, which allows distributing data and load to

multiple data nodes. To prevent data loss, Elasticsearch supports replicating shards on a
set number of different data nodes [5]. While the replica count adjusts on demand, the
shard count has to be set at index creation and cannot be changed afterward [5].
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1 {
2 "op": "add",
3 "path": "metadata/labels/webhook",
4 "value": "hello world"
5 }

Listing 2.9: JSON patch example for adding a k8s label

2.5.1.3 Working with Elasticsearch

The API of Elasticsearch is based on the HTTP protocol and JSON as data exchange
format.

Data can be ingested to Elasticsearch using a POST operation and complex queries can be
formulated using the JSON based Query Domain Specific Language (DSL) of Elasticsearch
[5].
Elasticsearch also allows for providing a template for indices matching a specified pat-

tern. Settings for the physical layout and type mapping are then applied whenever a new
index gets created [5].

2.5.2 Logstash
Logstash is a central part of the ELK-Stack and is a server-side data processing pipeline
used to aggregate and process data before it is ingested to Elasticsearch [5]. When used in
a stateless environment, it can be scaled horizontally and allows load balancing. A pipeline
is split into three processing stages [5]:

1. Input

2. Filter

3. Output

Logstash supports a wide range of event inputs ranging from raw TCP or UDP streams to
complex event like scheduled database queries. After an event is received, it is processed by
several plugins in the filter subsection. Again, a wide range of plugins can be used including
a from a simple field extraction to a cached database query. The output subsection defines
where the processed event should be transmitted to. Next to a predefined set of plugins,
it is possible to implement complex logic or additional plugins using Ruby [5, 20].

2.5.3 Kibana
Kibana [2] is a user-facing frontend for Elasticsearch providing tools for visualizing and
managing data stored in Elasticsearch. Depending on the licensing model (basic license is
used for this thesis), it supports a variety of builtin applications visualizing and analyzing
data in different ways. Instead of working with a single index, it supports index patterns,
which are regular expressions matching multiple indices [5].

2.5.3.1 Kibana Query Language

The Kibana Query Language (KQL) is an intentionally easy to use query language nar-
rowing down the result set [5]. It supports possibly chained comparisons for numeric
and text fields alongside wildcard selections. The query in Listing 2.10 limits the result
set to documents with destioantion.ip matching 8.8.8.8 and a nested object under
source.kubernetes.pods which matches labels.app = dns-resolver.
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1 destination.ip = "8.8.8.8" and source.kubernetes.pods:{labels.app: test}

Listing 2.10: Kibana Query Language (KQL) example

2.5.3.2 Elastic SIEM

Shipped with the basic version of Elastic is an extensive SIEM view, which helps to analyze
security-related data stored in Elasticsearch, including network flows. It supports multiple
views, including an event overview and network summarization. One usage pattern is
presented in Section 5.11

2.5.3.3 Elastic Common Schema

The Elastic Common Scheme (ECS) specification defines how documents have to be struc-
tured for using in Elastic provided applications such as SIEM [5].

With the help of guidelines such as field naming conventions and building blocks like
network objects, a normalized event can be stored in Elasticsearch and correlated with
other event types.

2.6 PostgreSQL
PostgreSQL is an open-source object-relational database. Apart from supporting standard
Structured Query Language (SQL) operations, it features a variety of built-in basic and
advanced (Table 2.3) data types and procedures [41].

Data Type Description
inet IPv4 or IPv6 host address
uuid universally unique identifier
xml XML data
json textual JSON data
jsonb binary JSON data, decomposed

Table 2.3: Some advanced data types supported by PostgreSQL

2.6.1 Persisting JSON Objects
The two data types for storing JSON, json and jsonb, are of special interest in this
thesis as they will be used to hold data retrieved from the k8s API. While the json data
type stores JSON in its original textual representation, jsonb uses a more efficient way of
storing the passed objects [41]. With the json data type, the stored object is parsed on
each query and is fast to insert. On the other hand, an object parsed as jsonb is slower to
persist but results in faster queries which can further be accelerated using an index [41].
When further reffering to JSON operations, the jsonb data type is in focus. The golang
library pq [19] and the default Java Database Connectivity (JDBC) driver is used in this
thesis to connect to a PostgreSQL database.

2.6.2 Working With JSON Objects
PostgreSQL provides several operations and procedures on JSON data. The SQL/JSON
path language retrieves a subset from a specific path and containment or existence op-
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erations narrow down to relevant data. Combined with procedures for e.g. building json
objects out of regular SQL data or aggregating JSON objects into JSON arrays, Post-
greSQL provides a performant feature set working with objects. jsonb supports btree
and hash indexing which are useful when checking for equality of two objects [41]. A more
powerful option is the Generalized Inverted Index (GIN) [62] which accelerates path oper-
ations, including containment queries, by passing the json_path_ops parameter or other
operations with json_ops. An index based on json_path_ops is smaller in size compared
to a json_ops index [41]. A use case for this is analysed in Section 5.8.

2.7 Memcached
Memcached is an open-source distributed, in-memory key-value store for binary data. It
allows one or more programs to access the store via the network and set/delete keys and
their values [55]. These operations are supplemented by more complex functionality, such
as setting an expiry for a specific key. After expiry, the key alongside its value is deleted.
A typical use case is caching complex database queries or authenticated users for a web
application.
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3 Use Case Discussion

3.1 Multi-Tenant Clusters
Securing a multi-tenant k8s with network policies is handled by the CNI plugins. Providing
a shared cluster thus involves isolating workloads running by different tenants. Relying on
the network policies without validation and constant monitoring can lead to a malfunc-
tion or human error resulting in secret leakage. Insight monitors traffic allowing cluster
operators to validate the expected path and blocking of network packets.

3.2 Validating Load Balancing
Relying on load balancing, which is not working as expected, can be fatal for production
workloads. k8s ingress controllers such as Traefik [34] implement their load balancing
algorithms, thus bring in an additional point of failure. When collecting flows on a per-
pod basis, connections from ingress controller pods to pods implementing a microservice
can be grouped by a service to pod relationship which allows trivial traffic distribution
calculation.

3.3 Root Cause Analysis
k8s is a clustered system running on a multitude of nodes. When a connection between
two nodes is slightly failing but has not failed yet (e.g. underprovisioned router, review
Figure 3.1) can harm communication between two pods using the failing link to commu-
nicate with each other. HTTP builds on TCP; thus, dropped packets get retransmitted,
extending the total transmission time. A service mesh would notice the failing link as pod
xy is running slow but does not hint to a connection issue between the two pods. With
insight, it is possible to analyze the connection between the pods for each pod individually
and show a mismatch between sent and received packets.

3.4 Debugging Uncommon Network Operations
HTTP workloads are well known for working inside k8s. Complex UDP workloads like
game engines, on the other hand, tend to behave unexpectedly. Insight can provide details
on where a packet is targeted and what NAT was performed, helping to debug connectivity
issues and understanding transport layer routing inside the cluster involving services.

3.5 Resulting Requirements
Requirements for the system are extracted from the described use cases and the purpose
statement.
The functional requirements set the outline of the technology stack and comprise of:

1. k8s as target system
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3 Use Case Discussion

Figure 3.1: Overloaded Router in k8s

2. Elasticsearch as database for storing flows

3. Kibana for visualization

4. Data format follows the ECS

Non-functional requirements are limited to a proof of concept state:

1. Scaling with a large cluster

2. No configuration overhead

3. Selectively monitor network traffic

4. Little to no performance impact

5. Assessing flows on a per-pod basis

6. Unique identifying of flows
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4 Platform Design

4.1 High-Level Architecture
The high-level architecture, as shown in Figure 4.1, comprises several components working
together as a flow monitoring system.

Figure 4.1: High Level Architecture

Interface ID Description
1 Checks if a probe should be injected to a new pod
2 Pods, Services and Endpoints are constantly monitored
3 Service and Endpoints are constantly monitored
4 NAT operations are pushed to a key-value-store
5 Collected flows are pushed to logstash
6 Pod and Service Metadata state updates are stored in PostgreSQL
7 NAT operations for one flow are retrieved
8 Kubernetes metadata is queried per endpoint IP
9 Processed flows are pushed to Elasticsearch
10 Retrieve flows for visualization

Table 4.1: High Level Architecture Interface Description for Figure 4.1
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4.1.1 Data Collection
An essential part of the data collection components are the network probes running
once per pod. The probe injector decides whether a created pod is eligible for getting a
network probe injected. They are supplemented by a the resolver, a component running on
each k8s node detecting NAT operations when a connection to a ClusterIP is established.
NAT events are being pushed to memcached, where they expire after the connection is not
active anymore and processed. The k8s API is queried by the kubeagent which stores
the current state of the cluster in a PostgreSQL database. This offloading helps to reduce
the load facing the k8s API and allows indexing and relational queries.

4.1.2 Flow Enhancing, Storage and Visualization
A central part of the monitoring platform is a logstash pipeline, which receives flow
events from the network probes and processes it. During the processing, it checks back
with memcached if the connection targets a k8s service and retrieves k8s metadata for
source and destination endpoints from PostgreSQL.
After the event passed through the pipeline, it is transferred to Elasticsearch, where it
gets persisted in an index. Kibana provides a user interface for accessing and visualizing
the data stored in Elasticsearch. The integrated SIEM view [2] provides a powerful query
tool for network flows.

4.2 Low-Level Design
4.2.1 Kubeagent
The kubeagent acts as middleware between the k8s API and Logstash. It relies on a
PostgreSQL database where the current cluster state is persisted and can be queried
using SQL by Logstash, thus implementing a stateful resource for the stateless Logstash.
While not implementing any logic, the kubeagent is a central part of the system reducing
generated load to the k8s API. After startup, it deletes the current state in the database
and starts listening to events from pods, services and endpoints. Received CREATE, UPDATE,
DELETE events translate to SQL statements which are executed on the databse.

4.2.2 Network Probe

Figure 4.2: Network Probe Internals
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Figure 4.3: Network Probe Flow Container Class Diagrams

The network probe captures packages and records byte and packet counts for each end-
point tuple. After a specified time, it transmits the collected flows to the central Logstash
pipeline and starts with an empty table. The execution path divides into three main tasks.
The first task periodically creates a new container for flows and pushes the old one to a
queue. A second task waits at the other end of the queue and tries to transmit full con-
tainers to Logstash using the HTTP protocol and JSON for data definition. In case a
container cannot be transmitted, it gets destroyed due to the timing limitations of other
components. The final task receives network packets and dispatches a job that decodes the
packet’s endpoints, computes a flow hash, and updates the current flow container based
on the computed sample. In Linux, this is achieved using a RAW socket as described in
Section 2.4.

4.2.3 Probe Injector
The network probe needs to be running in the same network namespace as the pod for
it to intercept network traffic. This can be achieved by running the network probe as
an additional container inside the pod. Instead of manually adding the container to the
pod definition, the probe injector uses a k8s mutating webhook for resource patching.
Automating the container injection allows more granular control of where traffic is inter-
cepted. For the proof of concept, probe injection is determined on a namespace annotation.
As pods are usually managed by deployments or stateful sets, the namespace is not passed
directly with the webhook request but is derived from the parent. A second API request
is therefore required to get the target namespace (Figure 4.4).
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Figure 4.4: Network Probe Injection Using K8s Webhooks

Figure 4.5: Components Of The Resolver
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4.2.4 Resolver
As discussed in Section 2.3.10, ClusterIP load balancing inside k8s is tracked in the Linux
conntrack table. In k8s, pods are not addressed individual but rather through a service
abstraction. Without further processing, flows captured by the network probe are of the
kind pod to service, and do not fulfill the requirement of intercepting the pod to pod
communication. The resolver listens to events conntrack table, determines if the target IP
is of kind ClusterIP and stores a corrected destination in Memcached as seen in Figure 4.5.
As seen in Equation (4.1), the additional information of the NAT operation tracked in the
conntrack table allows the mapping of service calls to a specific target pod.
〈

(IPsrc, Psrc) , (IPservice, Pservice) , (IPpod, Ppod)
〉

=⇒
〈

(IPsrc, Psrc) , (IPpod, Ppod)
〉

(4.1)
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5 Implementation
All components, excluding the central Logstash pipeline, are implemented in Go, also
known as Golang [30]. With a syntax similar to C, it is an imperative, statically compiled
programming language. The builtin concurrency concept relies on goroutines. A gorou-
tine does not fit the description of a coroutine or a thread but can be interpreted as very
light thread starting with a small stack [8].
Goroutines are distributed over multiple operating system threads improving multi-core
performance [8]. Following the ideology "Do not communicate by sharing memory; instead,
share memory by communicating" [8], Go introduces channels as a way to transfer data
between concurrently running processes instead of using shared memory. Implementing
Communicating Sequential Processes (CSP) [43], a channel acts like a traditional Unix
pipe and is used to interconnect goroutines. The keyword go in front of a function call
dispatches a new goroutine.

While Go is not an object-oriented programming language, it provides an abstraction
using Interfaces, which are implemented by structs and their methods. The source
code is divided into modules that contain packages. A module is commonly resolved by
its source control path, for this project module "github.com/xvzf/insight/. Packages
itself derive from a folder structure and consist of one or multiple files starting with a typ-
ical package tag, e.g. package "flow". A package has exported and contained symbols,
controlled by the letter case. If a function or variable starts with an uppercase character,
it is exported; otherwise, it is package exclusive.
With readability in mind, Go omits redundant parentheses and semicolons. Compared to
C where many coding-styles, such as the Linux kernel coding style [15], Go strives for a
unified coding style. One of the utilities shipped with Go is gofmt that ensures conform
formatting of files and packages.

Static compilation of Golang and the implied lack of library dependencies at runtime
makes it ideal as a programming language of choice in container-based systems. Binaries
always contain the Go runtime, which "implements garbage collection, concurrency, stack
management, and other critical features of the Go language" [10].

5.1 Compatibility & Used Libraries
With Kubernetes (k8s), there are no long term support releases. Following a release cycle
of roughly three months, the latest three k8s versions get maintenance updates. This thesis
targets k8s 1.17 (latest release as of march 2020). The previous 1.16 release introduces
inital dual stack support (IPv4 alongside IPv6) changing the datastructure for pod states.
The proof of concept should therefore be compatible with version 1.16 and higher and is
validated against the k8s distribution k3s [56] version 1.17.4 in combination with Docker
19.03 [46] as container runtime.

Elasticsearch, Kibana and Logstash releases changed during the development process.
The system is validated against 7.6.1. First introduced with this release is support for
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Library Version Information
go-cmp [18] v0.4.0 Deep compare operations used for testing
gomemcache [11] a41fca850d0b Client library for Memcached
client-go [14] v0.17.0 K8s API client
logrus [21] v1.4.2 Logging framework
gopacket [31] v1.1.17 Network interception and analysis
pq [19] v1.3.0 SQL driver for PostgreSQL

Table 5.1: List of used libraries

Kibana Query Language (KQL) queries targeting nested fields.

Introduced microservices require Golang 1.13 for compilation and rely on the Alpine
Linux [13] docker image 3.11 as runtime target. A list of libraries used can be retrieved
from Table 5.1.

5.2 Automated Testing, Compilation And Delivery
For ensuring code quality and automation of the deployment to a testing target, DroneCI
[35] is used as a continuous integration and delivery platform. It runs on k8s and executes
each step as an individual container.

The pipeline (Appendix B), triggered by a push event on the project’s git repository,
consists of three different stages stacked on top of each other that involve testing, compi-
lation, and an optional deployment step.

Unit tests are implemented using the test framework shipped with Golang. During the
testing stage, the computed test coverage ensures establishing a high test quality for crit-
ical functions.

Every component is delivered as a container image and its building process is described
using a Dockerfile. While there are slight differences for each component, the building pro-
cess divides into two distinct phases. Starting with the first line, a container image with a
full Golang toolchain is selected, which is later used to build a static binary (line 8,9). The
final base image is selected in line 13. The statically compiled and therefore dependeny
less, binary is copied from the earlier build stage (line 15). The resulting container image
is small in size and contains only runtime dependencies.

Every introduced component alongside the databases is deployed inside a k8s cluster.
The multitude of resources and dependencies is managed by helm [12], a package manager
for k8s based on templating resources with environment-specific values.
When pushing to a predefined branch, DroneCI executes a command which updates a
staging environment using a helm command.

5.3 Unified Code Base & Release Management
Source code for all components is tracked in a git repository (https://github.com/xvzf/insight.git).
Every commit runs through a test suite and, if passed, is delivered by a container image.
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1 FROM golang:1.13-alpine as builder
2

3 WORKDIR /app
4

5 copy . .
6

7 # Build application
8 RUN go get -d -v ./...
9 RUN go build cmd/kubeagent/kubeagent.go

10

11

12 # Generate a smaller docker image without build dependencies
13 FROM alpine:3.11
14

15 COPY --from=builder /app/kubeagent /kubeagent
16 ENTRYPOINT ["/kubeagent"]

Listing 5.1: Two-staged Dockerfile

In case a commit is reviewed as stable, a git tag marks it as release.

5.4 Network Flows
A network flow as introduced in Section 2.1 is modelled based on the class diagram in
Figure 4.3. Listing 5.2 shows its representation in Go, based on structs. The Meta struct
holds endpoint information comprised of source and destination IP, the transport proto-
col and detailed information on ports (TCP, UDP) or protocol types and codes (ICMP,
ICMPv6).

5.4.1 Unique Identifier
The lifetime of a network flow can exceed the sample period of the network probe. A unique
identifier for endpoints of a flow allows tracking over a multitude of samples. Ensuring a
matching identifier for swapped endpoints, implemented by a hash collision as introduced
in Section 2.1.1, further allows identifying incoming and outgoing traffic.
The flow hashing used in this thesis follows guidelines of the CommunityID specifica-

tions [45], which is already supported by Kibana [2, 45].

The implementation in Golang starts ordering the endpoints using a lexicographical com-
parison between the byte representation of each endpoint IPs (Listing 5.3). After ordering,
endpoints and protocol information are passed to a SHA1 [42] hash function. The base64
encoding [49] of the computed hash prefixed with 1: is the resulting flow hash and unique
identifier.

5.4.2 ICMP And ICMPv6 Flow Hashing
While the presented flow hash algorithm supports TCP and UDP as port based protocols,
the Internet Control Message Protocol (ICMP) and Internet Control Message Protocol for
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5 Implementation

1 package "flow"
2

3 // Counters contains flow counters
4 type Counters struct {
5 Bytes uint64
6 Packets uint64
7 }
8

9 // Meta contains flow metadata
10 type Meta struct {
11 Transport protos.ProtocolType
12 Src net.IP
13 Dst net.IP
14 IcmpType uint16
15 IcmpCode uint16
16 DstPort uint16
17 SrcPort uint16
18 }
19

20 // Flow contains flow data
21 type Flow struct {
22 Meta Meta // Flow Src/Dst & Protocol Information
23 Incoming Counters // Incoming counters
24 Outgoing Counters // Outgoing counters
25 CommunityID string // CommunityID
26 Start time.Time // Start time
27 End time.Time // Stop time
28 }

Listing 5.2: Flow representation in Go (pkg/flow/flow.go)
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5.4 Network Flows

1 func extractTuple(f flow.Meta) ([]byte, []byte, uint16, uint16) {
2 // ...
3 cmp := bytes.Compare(f.Src, f.Dst)
4 if cmp < 0 || (cmp == 0 && f.SrcPort < f.DstPort) {
5 return rawIP(f.Src), rawIP(f.Dst), f.SrcPort, f.DstPort
6 }
7 return rawIP(f.Dst), rawIP(f.Src), f.DstPort, f.SrcPort
8 }

Listing 5.3: Endpoint ordering (pkg/flow/communityid/communityid_hasher.go)

1 func (ch *hasher) Hash(f flow.Meta) string {
2 ip0, ip1, p0, p1 := extractTuple(f)
3

4 h := crypto.SHA1.New()
5 h.Write(ch.seed[:])
6 binary.Write(h, binary.BigEndian, ip0)
7 binary.Write(h, binary.BigEndian, ip1)
8 h.Write([]byte{byte(f.Transport), 0})
9 binary.Write(h, binary.BigEndian, p0)

10 binary.Write(h, binary.BigEndian, p1)
11

12 return "1:" + base64.StdEncoding.EncodeToString(h.Sum(nil))
13 }

Listing 5.4: Network flow hashing (pkg/flow/communityid/communityid_hasher.go)

the Internet Protocol Version 6 (ICMPv6) use type and code. The CommunityID specifica-
tions suggest mapping the transmitted ICMP/ICMPv6 type to a port tuple and omitting
the code. Following Table 5.2 as an example, a simple lookup operation determines a port
tuple consolidated of the original type and its counterpart. It is noteworthy that not every
ICMP/ICMPv6 type has a counterpart. In this case, the type and code are used as source
and destination port. Refer to Listing 5.5 as lookup operation.

5.4.3 Source Detection
Detecting the initiator of a connection is trivial for ICMP and ICMPv6 as there are specific
types for requests and responses. With the assumption that the TCP connection estab-

Type Counterpart
ICMPv6TypeEchoReply ICMPv6TypeEchoRequest
ICMPv6TypeRouterSolicitation ICMPv6TypeRouterAdvertisement
ICMPv6TypeNeighborSolicitation ICMPv6TypeNeighborAdvertisement
ICMPv6TypeEchoRequest ICMPv6TypeEchoReply
ICMPv6TypeRouterAdvertisement ICMPv6TypeRouterSolicitation
ICMPv6TypeNeighborAdvertisement ICMPv6TypeNeighborSolicitation

Table 5.2: Selection of ICMPv6 types and the counterparts (pkg/flow/common/icmp.go)
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1 func GetICMPv6PortEquivalents(t, c uint16) (uint16, uint16, bool) {
2 if v, ok := icmpV6Equiv[t]; ok {
3 return t, v, false // Is not one-way
4 }
5 return t, c, true // Is one-way
6 }

Listing 5.5: ICMPv6 to port equivalent mapping

1 func (m Meta) WithCorrectedSource() Meta {
2 switch m.Transport {
3 case protos.TCP, protos.UDP:
4 if m.DstPort > m.SrcPort {
5 m.Src, m.SrcPort, m.Dst, m.DstPort = m.Dst, m.DstPort, m.Src,

m.SrcPort↪→

6 }
7 case protos.ICMP4:
8 if v, ok := common.GetICMPv4RequestType(m.IcmpType); ok {
9 m.Src, m.Dst = m.Dst, m.Src

10 m.IcmpType = v
11 }
12 case protos.ICMP6:
13 if v, ok := common.GetICMPv6RequestType(m.IcmpType); ok {
14 m.Src, m.Dst = m.Dst, m.Src
15 m.IcmpType = v
16 }
17 }
18 return m
19 }

Listing 5.6: Connection source detection

lishment was not captured, UDP and TCP packets are going in one direction or the other.
Based on the Linux kernel default settings for ephermal ports ip_local_port_range [16]
starting at 32768, it is assumed that the lower value port is the destination and the higher
value port the source (Listing 5.6).

5.5 Network Probe
5.5.1 Intercepting Network Traffic
The network probe intercepts network traffic using a PACKET socket as introduced in Sec-
tion 2.4. Gopacket [31] abstracts raw socket operations and provides a channel providing
received packets. Referring to Listing 5.7, the device is opened in live mode with a maxi-
mum packet length of 9, 038 bytes supporting jumbo frames [36].
The function creating a channel with captured packets further optimizes performance

by configuring gopacket for being lazy, thus not parsing the packet unless requested and
not copying the packet by using pointer references instead.
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1 func Open(device string) (Capturer, error) {
2 handle, err := pcap.OpenLive(device, 9038, true, pcap.BlockForever)
3 // ...
4 }
5

6 func (p *pcapHandle) Packets() chan gopacket.Packet {
7 source := gopacket.NewPacketSource(p.handle, p.handle.LinkType())
8 source.Lazy = true
9 source.NoCopy = true

10 return source.Packets()
11 }

Listing 5.7: Intercepting network traffic pkg/capture/capture.go

1 type data struct {
2 sync.Mutex
3 flows map[string]*flow.Flow
4 }
5

6 type container struct {
7 data data
8 hasher communityid.Hasher
9 start time.Time

10 }

Listing 5.8: Flow container datastructure

5.5.2 Extracting A Sample
When a packet comes in, its endpoints need to be extracted. Helper functions from the
gopacket library help by extracting IP endpoints as well as transport protocol endpoints.
The aforementioned flow.Meta struct is populated accordingly and expanded by the

packets byte count to a flow sample.

5.5.3 Aggregating Packets To Flows
Multiple flow samples captured over a defined timeframe aggregate to a network flow. A
container keeps track of current flow statistics and is realized by a hash map. The Com-
munityId builds the key. The Value is a pointer to a flow.Flow object. A mutex protects
the data structure as multiple goroutines handle incoming flow samples at the same time.
After a new sample hits the processing pipeline, its CommunityID is computed. If the
CommunityID is already present in the container, its flow object is updated accordingly.
Otherwise, a new flow.Flow is created.

5.5.4 Generating A Flow Event
In a specified interval, the current container is replaced with a new one and stored flows
are exported. A function iterates over values in the hash map and creates a new flow event
(Appendix A) following the Elastic Common Scheme (ECS). Exported flow events are
consolidated in an array and transfered to Logstash using a HTTP POST request.
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5.6 Kubeagent
5.6.1 PostgreSQL In Memory Database
The current k8s state is persisted in a PostgreSQL database, more specifically in a field
of type jsonb. There is no need to persist the state to disk as it is destroyed and repop-
ulated whenever the kubeagent restarts. To further increase database performance, the
data directory is mounted as ramdisk. After database startup, a script initializes tables
and creates required indices (Appendix C).

5.6.2 Kubernetes To SQL Middleware
The functionality of the kubeagent is simple and consists of watching the k8s API and
transferring events to the PostgreSQL database. The k8s client library for Go supports the
watch API. Captured events for pods, services and endpoints are passed to a channel. Run-
ning inside the cluster, credentials from a service account are used to authenticate against
the API (Listing 5.9). Events translate to INSERT, UPDATE and DELETE SQL statements

1 func main() {
2 // ...
3 config, err := rest.InClusterConfig()
4 // ...
5 clientset, err := kubernetes.NewForConfig(config)
6 // ...
7 podWatcher, err :=

clientset.CoreV1().Pods("").Watch(metav1.ListOptions{})↪→

8 // ...
9 var wg sync.WaitGroup

10 store := kubestatestore.New(os.Getenv("CONN_STRING"))
11 // Create a goroutine for the pod & service watcher
12 for _, watcher := range []watch.Interface{podWatcher, svcWatcher,

endpointsWatcher} {↪→

13 wg.Add(1)
14 // Capture incoming events and pass them to the PodStateStore
15 go func(w watch.Interface) {
16 defer wg.Done()
17 for e := range w.ResultChan() {
18 // Pass event to the store
19 go store.HandleUpdate(e)
20 }
21 }(watcher)
22 }
23 wg.Wait()
24 }

Listing 5.9: Watching the k8s API

which update the k8s state in PostgreSQL.
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5.7 Resolver
5.7.1 Tapping The Conntrack Table
The command conntrack -E outputs connection tracking events from the Linux kernel.
A regular expression (Listing 5.10) parses the output accordingly into a conntrack event
as noted in Equation (5.1).

1 // "[UPDATE] tcp 6 86400 ESTABLISHED src=10.42.1.21 dst=10.43.15.37
sport=49594 dport=9200 src=10.42.0.49 dst=10.42.1.21 sport=9200
dport=49594 [ASSURED]"

↪→

↪→

2 const ipPortRegex = `src=(.*) dst=(.*) sport=(\d+) dport=(\d+)`
3 var extractor =

regexp.MustCompile(`\s*\[(NEW|UPDATE|DESTROY)\]\s+(tcp|udp).*` +
ipPortRegex + `.*` + ipPortRegex + `.*`)

↪→

↪→

Listing 5.10: Regular expression parsing conntrack events

(
Etype, Eprotocol; (IPsrc, IPdst, Psrc, Pdst) → (IPsrc, IPdst, Psrc, Pdst)

)
(5.1)

Etype distincts between NEW, UPDATE and DESTROY events while the Eprotocol specifies the
network protocol. The following tuple to tuple mapping denotes original connection details
and a possible masqueraded connection.

5.7.2 Filtering For Kube-Proxy Events
The Linux kernel keeps track of every network connection, resulting in a large number of
events. The purpose of the resolver is to map a request facing a k8s service to a pod. The
resolver retrieves all k8s ClusterIPs by interacting with the watch API for services. If a
connection faces a ClusterIP, the resolver computes CommunityIDs of its original and mas-
queraded connections and creates a new key-value entry in Memcached (Equation (5.2)).

ORIGcommunity_id → (MASQcommunity_id, IPnew_dst, Pnew_dst) (5.2)

Using the original CommunityID as the key allows efficient lookup operations. Setting
a timeout for the key, depending on its event, helps to keep track of events without
overflowing the key-value store. After registering a new event, a timeout of 3, 600 seconds
is set. This ensures tracking of e.g. long TCP streams and avoids an orphaned entry when
a node fails and cannot delete its keys. After a connection is considered closed, a timeout
of 20 seconds is set, preventing a deletion before the network probes sample timeframe
ends.

5.8 IP To Kubernetes Object Mapping
Due to security constraints, not every pod is allowed to retrieve the k8s state from the
API. Matching IP addresses to its k8s objects is therefore offloaded to the PostgreSQL
database holding the k8s state. SQL queries from Logstash retrieve pod and service infor-
mation for a specific IP address.

Listing 5.11 shows a SQL statement which retrieves pod labels for the IP 10.42.0.12.
The JSON containment operation limits the result set to pods having the IP 10.42.0.12
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1 select
2 p.definition #> '{"metadata", "labels"}' as pod_labels
3 from pods p
4 where p.definition #> '{"status", "podIPs"}' @> '[{"ip":

"10.42.0.12"}]'::jsonb↪→

Listing 5.11: SQL query for pod labels

1 select
2 s.definition #> '{"metadata", labels}' as service_labels
3 from services s
4 join endpoints e on (s.name, s.namespace) = (e.name, e.namespace)
5 where e.definition #> '{"subsets"}' @> '[{"addresses": [{"ip":

"10.42.0.12"}]}]'::jsonb↪→

Listing 5.12: SQL query for service labels

assigned. The selection p.definition #> '{"metadata", "labels"}' locates the pod
labels.

Retrieving services for a specific IP requires an additional JOIN operation as target
information is stored inside the related service endpoint and not the service object itself
(Listing 5.12).

One IP can map to multiple pods and nodes when e.g. multiple pods on one node run in
the network namespace of the host. In case the result set is empty, the IP belongs to an
already deleted pod or is not contained in the pod or service subnet.

5.9 Logstash Pipeline
The HTTP input plugin for Logstash takes in network flow events on port 8080. The
filter section starts with removing fields generated by the input plugin. In a second step, a
request to Memcached checks for a potential pod to service flow. Upon a positive lookup,
an additional filter step updates destination IP, port and CommunityID. Afterwards, the
jdbc_streaming plugin executes a query on the k8s state database extracting, pod and
service metadata for source and destination IPs. Performance improvements are made by
combining pod and service queries as described in Section 5.8 and caches the results for
ten seconds. As discussed in Section 5.8, it is possible for one IP to map to multiple pods
or services. Generating e.g. a donut graph in Kibana requires a terms filter which does not
support nested fields. Therefore, the first metadata entry for pods and services is copied
to an object typed field.

Logstash does not support the jsonb data type of PostgreSQL therefore the JSON is
requested as text and afterwards parsed.

The pipeline ends with an Elasticsearch output plugin. Logstash manages an index tem-
plate (Appendix E) and creates one document per event in a date based index. The index
template specifies the number of shards (3) and replicas (0). Depending on the system
utilization and Elasticsearch cluster layout, these settings have to be tuned. Reflecting the
ECS, textfields map to the keyword type by default.
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1 apiVersion: admissionregistration.k8s.io/v1beta1
2 kind: MutatingWebhookConfiguration
3 metadata:
4 name: {{ include "probeinject.fullname" . }}
5 labels:
6 {{- include "probeinject.labels" . | nindent 4 }}
7 webhooks:
8 - name: webhook-service.default.svc
9 failurePolicy: Fail

10 clientConfig:
11 service:
12 name: {{ include "probeinject.fullname" . }}
13 namespace: {{ .Release.Name }}
14 path: "/inject"
15 caBundle: {{ .Values.secret.caBundle }}
16 rules:
17 - operations: [ "CREATE" ]
18 apiGroups: [""]
19 apiVersions: ["v1"]
20 resources: ["pods"]

Listing 5.13: Template for the mutating webhook

5.10 Probe Injector
Network probes are selectively injected before pod creation. For the proof of concept, the
namespace annotation insight decides whether a sidecar container is injected or not. The
probeinjector is a HTTPS server providing an endpoint for a k8s MutatingWebhookConfiguration
(Listing 5.14). Upon namespace validation, it returns a JSON patch [4] adding the network
probe to the container array (Listing 5.14).

5.11 Visualization using Kibana
As the data format is compatible with the Elastic Common Scheme (ECS), the Kibana
SIEM view visualizes network flows inside the cluster. After creating the index pattern
insight-1.0.0-* and adding siem:defaultIndex under the advanced settings, there are
two populated views in the SIEM app. The event view (Figure 5.1) in combination with
the timeline (Figure 5.2) allows flow tracing based on k8s metadata and connection details
while the network overview (Figure 5.3) gives a global summarization of network activity.

37



5 Implementation

Figure
5.1:K

ibana
SIEM

event
view

38



5.11 Visualization using Kibana

1 {
2 "op":"add",
3 "path":"/spec/containers/-",
4 "value":{
5 "name":"insight-sidecar-probe",
6 "image":"quay.io/xvzf/insight:v1.1.6",
7 "env":[{
8 "name":"LOGSTASH",
9 "value":"http://logstash.insight.svc.cluster.local:8080/"

10 }],
11 "resources":{}
12 }
13 }

Listing 5.14: JSON patch injecting the network probe

Figure 5.2: Kibana SIEM timeline
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6 Evaluation
The proof of concept is analyzed and tested against performance and a potential benefit
in scenarios described in Chapter 3.

6.1 Platform Scaling And Performance Discussion
6.1.1 Component Scaling
The flow monitoring platform can be split into three independent sections: flow collection,
external databases and ELK-Stack. The ELK-Stack is built to be scalable out of the box;
this is not in focus. While running in the cluster, its components can be exclusively limited
to a specified group of nodes and do not impact the cluster operability status. With 5000
nodes supported in a single k8s [26], adding nodes dedicated to the ELK-Stack components
is not considered relevant.
The Logstash pipeline is stateless and gathers its data from Memcached and Post-

greSQL. It can be scaled horizontally, depending on the current system load. Caching
queries from PostgreSQL helps to reduce SQL queries, thus improves larger scaled deploy-
ments.
While Memcached is distributed by design and can be scaled across multiple instances,

the number of key-value pairs increases with everything interacting with a service, be it a
deployment or a new node.
The PostgreSQL database hit by possibly multiple Logstash pipelines is not distributed

by default. As the majority of queries are select statements, read-only mirrors can add
support for a more significant number of clients.

6.1.2 Resolver performance issues
The resolver relies on the conntrack executable to interact with the Linux kernel. While
this is a working solution, executing a second program and parsing its output is not
efficient and error-prone. During the development and validation phase, several issues
occured which were caused by the Netlink receive buffer being to small. Increasing the
buffer results in a more reliable execution, but during high load sequences, the resolver
can crash as reaction to conntrack -E crashing in the background. A potential fix for this
behavior is implementing the Netlink socket for conntrack events directly in Go, which
allows more robust error handling.

6.1.3 Network Probe performance impact
The network probe intercepts traffic in a non-blocking way. If a buffer is full or the cap-
turing channel cannot keep up with the transmission speed, the network probe misses
the packets but not the software communicating. Operations of the network probe are
transparent to the application running inside the pod. The only performance penalty is
generated CPU load, memory consumption and the bandwidth required to transfer flow
data.
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6.2 Security Concerns
As discussed in Section 2.4, intercepting network traffic requires a PACKET socket which
itself depends on the CAP_NET_RAW capability. While the capability allows reading packets,
it also allows the injection of arbitrary packets, which allows attackers to perform man in
the middle attacks. Using a k8s security context, adding the capability just for the probe
containers in a pod limits the attack vector.

In managed k8s clusters, especially in the corporate environments processing sensitive
information, pod security policies prohibit the injection of capabilities rendering the plat-
form useless.

Insight does not implement an access control mechanism, thus does not distinguish be-
tween a developer who has access to the integration environment and an administrator who
runs the production environment. Both user groups have access to the full flow database.
Another concern is the general data protection regulation law when public IP addresses
show up in the network flows. However, source and destination IPs can be omitted as k8s
labels and the CommunityID is sufficient to query the dataset.

6.3 Pratical Testing
6.3.1 Test Setup
During development, validation and testing a multitude of k8s was used, ranging from
multi-master clusters to a single node cluster on a notebook. Further presented visual-
izations and metrics were generated on a multi node k8s cluster in the AWS cloud [44]
managed by the kubernetes operator kops [26]. Version 1.17.3 with Docker 19.3.4 as
container runtime is distributed on three worker nodes (t3a.xlarge instance type, 4 CPU,
16GB system memory) and one master node (t3a.medium instance type, 2 CPU, 8GB sys-
tem memory). The CPU model is an AMD EPYC 7571 clocked to 2.2 GHz.
The ingress controller traefik [34] scales to four instances and is exposed via an AWS
network load balancer. As a test target, two deployments with 6 instances of a microser-
vice returning request information is used (Appendix F). They are deployed to different
namespaces where one has network probe injection enabled and the other one does not.
A dedicated instance in the same subnet as the k8s cluster is used for benchmarking.

6.3.2 Measuring The Performance Impact Of The Network Probe
Using the !pache benchmark tool ab [40], the response time of 100, 000 request with 60
in parallel is measured for both deployments. Alongside, CPU and network utilization is
measured.
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Figure 6.1: Performance impact of the network probe

The resulting response times (Figure 6.1) show an impact on the response time worsening
it by two milliseconds for the 99 percentile. Starting with around 90 percent of the request,
the response time difference becomes neglicable. Reviewing the CPU utilization during the
benchmark (Figure 6.2) shows the network probes require up to 0.15 CPU cores.

Figure 6.2: CPU utilization cummulated by container and namespace

6.3.3 Load Balancer Validation
Captured flows allow complex visualizations such as validating ingress load balancing
alongside internal cluster load balancing. In this test scenario, the four traefik ingress con-
troller instances are hit by an external load balancer and forward request to the sample
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application thus relying on internal cluster load balancing. In Figure 6.3, a pie chart visu-
alizes the distribution of network traffic (based on the total byte count) to the microservice
and sets it to relation with the ingress controller instances.

6.3.4 Comparison To Metric Based Monitoring
Monitoring resources inside and around the cluster is a key part of every operations team.
With k8s, an often seen approach is Prometheus [32] as time series database combined
with Grafana [51] as user facing visualization frontend. While supporting many metrics
such as CPU and memory utilization, metrics for incoming and outgoing network traffic.
Comparing the resulting graph (Figure 6.4) to a visualization generated by Insight (Fig-
ure 6.5), it does only show how much network traffic was present at a specific time but
not where it was directed.
The increased grade of detail allows precise performance tuning and helps identifying

bottlenecks and scaling issues.

Figure 6.4: Network graph from Prometheus and Graphana

Figure 6.5: Network graph based on data from Insight

6.3.5 Verifying Correct Canary Deployments
A common approach on rolling out new revisions in microservice architectures is to use
canary deployments. A group of pods with the new version is started and a small percent-
age of the incoming request face the new deployment. This allows validating new software
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versions with production traffic. Faulty versions will just affect a small group of users and
not everyone.
Thus, validating the correct traffic distribution is crucial. Deploying Insight on both the

new and old deployment allows computing the traffic distribution.

The described scenario is made up by passing a traffic distribution of 90%/10% to the
k8s ingress (Appendix G). After generating traffic on the new endpoint, Figure 6.6 shows
the desired traffic distribution is working as intended.

Figure 6.6: Traffic distribution for canary deployment
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7 Conclusion & Future Work
The developed proof of concept for a flow monitoring system is based on three data probes,
two intermediate data caches and the ELK-Stack for persisting and visualizing aggregated
data. Logstash merges incoming flow events generated by multiple network probes run-
ning on a per-pod basis and annotates them with the k8s state and service calls. The data
format is compatible with Elastic Common Scheme (ECS); thus the SIEM view in Kibana
is used as frontend.

The system was already in use for pre-production debugging of load balancing UDP con-
nections. It allows visualizing network activity of higher-level components such as ingress
controllers and also provides more details on the network saturation. As the evaluation
showed, source/destination-based flows allow for a more fine-grained analysis of network
activity in comparison to metric-based monitoring solutions.
An enhanced visualization could use collected flows to build a weighted graph showing

how interconnected microservices communicate with each other.

Despite being functional, there are some drawbacks and several points for improvement.
While the network probe only requires the Linux capability NET_RAW for intercepting pack-
ets on the container side interface, the resolver needs to run on each node with system priv-
ileges. In managed k8s environments, this is usually prohibited as the required NET_ADMIN
capability allows manipulation of system-wide routing tables and other security-related
configuration. With this limitation, service connection cannot be traced to a specific pod,
rendering key features such as load balancing validation useless.

The presented architecture consists of a cluster-wide PostgreSQL database, a cluster-wide
Memcached key/value store and a Logstash pipeline. As analyzed in Section 6.1.1, each
component group can be scaled up, but the overhead increases. Merging the functionality
of the Logstash pipeline, kubeagent and resolver, one microservice running on each node
would lead to less data transfer between nodes. This approach would lower the architec-
ture complexity and allow for better scaling and performance of the service to pod lookup
table as it only has to contain entries of the local node. A static compiled pipeline could
also provide performance benefits compared to a Logstash.
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Glossary
Application Programming Interface (API) An Application Programming Interface is a

definition of specification and rules providing a description for interfacing with a
particular software that implements the API.

Communicating Sequential Processes (CSP) .

conntrack The Linux conntrack table is a kernel-layer network connection tracking table.

container A Linux Container is a set of processes isolated from the rest of the system.

Container Network Interface (CNI) A Container Network Interface is a set of specifica-
tion for providing networking to containers..

Container Runtime Interface (CRI) A software that starts and stops containers, e.g.
Docker [46].

control groups (cgroups) .

Custom Resource Definition (CRD) k8s internal definition for extending the included
resources by third-party ones.

Domain Specific Language (DSL) ADSL specifies how data can be queried from a database.

Elastic Common Scheme (ECS) ECS is a definition of how data has to be structured for
being compatible with Elastic apps such as kibana.

ELK-Stack ELK-Stack describes a combination of Elasticsearch, Logstash and Kibana.

Generalized Inverted Index (GIN) .

Hypertext Transfer Protocol (HTTP) HTTP is a common application layer protocol
used for transfering serialized information.

Inter Process Communication (IPC) Inter Process Communication (IPC) describes the
data exchange between two running process.

Internet Control Message Protocol (ICMP) .

Internet Control Message Protocol for the Internet Protocol Version 6 (ICMPv6) .

Internet Protocol (IP) The Internet Protocol is the base for the world wide web.

IP Address Management (IPAM) IPAM is a system keeping track of already assigned
IP addresses and decides which IP address will be assigned next.

IP Virtual Server (IPVS) IPVS incorporates into the Linux Virtual Server acting as load
balancer..
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iptables IPtables is a userspace tool for configuring firewall rules on Linux based systems.

Java Database Connectivity (JDBC) .

JavaScript Object Notation (JSON) JavaScript Object Notation (JSON) is a text-based
data interchange format [3].

Kibana Query Language (KQL) .

Kubernetes (k8s) Kubernetes is an open source container orchestrator.

Linux Apache MySQL PHP (LAMP) A Linux, Apache, MySQL, PHP-Stack is a com-
mon combination of components used in classic web development.

Network Address Translation (NAT) .

pod A Pod is the smallest runtime component of Kubernetes (k8s) consisting of a set of
one or more containers and additional data.

Process Identifier (PID) .

Role Based Access Control (RBAC) Role Base Access Control is a authorization pattern
for permission management.

secure Hypertext Transfer Protocol (HTTPS) HTTPS describes a TLS encrypted HTTP
connection.

Security Information and Event Management (SIEM) SIEM is a system bringing dif-
ferent data sources together and helps extracting potential security related threads.

Structured Query Language (SQL) .

Transmission Control Protocol (TCP) TCP is a reliable, stateful IP transport layer.

Transport Layer Security (TLS) TLS is used to to encrypt a TCP connection.

Unix Time Sharing (UTS) .

User Datagram Protocol (UDP) UDP is an IP transport layer protocol with minimal
protocol mechanisms.

web hook A web hook is a non standardized communication pattern e.g. used in middle-
ware components. Instead of polling, the server sends a request to a defined endpoint
implementing a callback based on the HTTP protocol.

YAML Ain’t Markup Language (YAML) YAML is a superset of JSON designed for hu-
mans.[24].
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A Network Flow Event
1 const ECSversion = "1.4"
2

3 var hostname string
4

5 // Agent in ECS
6 type Agent struct {
7 HostName string `json:"hostname"`
8 Type string `json:"type"`
9 }

10

11 // ECS version tag
12 type ECS struct {
13 Version string `json:"version"`
14 }
15

16 // EventDescription in ECS
17 type EventDescription struct {
18 Duration time.Duration `json:"duration"`
19 Kind string `json:"kind"`
20 Action string `json:"action"`
21 Category string `json:"category"`
22 Dataset string `json:"dataset"`
23 Start time.Time `json:"start"`
24 End time.Time `json:"end"`
25 }
26

27 // EndpointDescription in ECS
28 type EndpointDescription struct {
29 Address string `json:"address"`
30 IP net.IP `json:"ip"`
31 Port uint16 `json:"port"`
32 Bytes uint64 `json:"bytes"`
33 Packets uint64 `json:"packets"`
34 }
35

36 // NetworkDescription in ECS
37 type NetworkDescription struct {
38 Type string `json:"type"`
39 Bytes uint64 `json:"bytes"`
40 Packets uint64 `json:"packets"`
41 Transport string `json:"transport"`
42 CommunityID string `json:"community_id"`
43 }
44

57



A Network Flow Event

45 // Event contains the event metadata passed to logstash
46 type Event struct {
47 Type string `json:"type"`
48 ECS *ECS `json:"ecs"`
49 Agent *Agent `json:"agent"`
50 Event *EventDescription `json:"event"`
51 Source *EndpointDescription `json:"source"`
52 Destination *EndpointDescription `json:"destination"`
53 Network *NetworkDescription `json:"network"`
54 }
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B Shortened CI/CD-Pipeline

1 - name: test_insight
2 image: golang:1.13
3 commands:
4 - apt-get update --yes && apt-get install --yes libpcap-dev
5 - go vet ./...
6 - go test -count=1 -race -v -cover ./...
7 - name: build_and_publish_kubeagent
8 image: plugins/docker
9 settings:

10 # ...
11 tags:
12 - ${DRONE_COMMIT_SHA:0:8}
13 - ${DRONE_BRANCH}
14 depends_on:
15 - test_insight
16 # ... Build other images
17 - name: deploy
18 image: alpine/helm:3.0.2
19 user: root
20 settings:
21 # ...
22 commands:
23 # ...
24 - helm repo add elastic https://helm.elastic.co
25 - helm dependency update ./helm/chart/insight/
26 - helm upgrade --install --namespace=$${HELM_NAMESPACE} $${HELM_NAME} -f

./helm/chart/values-$${HELM_NAME}.yaml ./helm/chart/insight↪→

27 when:
28 branch: staging
29 depends_on:
30 - test_insight
31 - build_and_publish_kubeagent
32 # ...
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C PostgreSQL Table Layout

1 \\set VERBOSITY terse
2 \\set ON_ERROR_STOP true
3

4 do language plpgsql $$ begin
5 raise notice '[+] Creating pods schema';
6 do $pods$ begin
7 create table if not exists pods (
8 uid UUID primary key
9 , name text not null

10 , namespace text not null
11 , ip inet
12 , definition jsonb not null
13 );
14 -- Index for containment queries
15 create index idx_pods_definition on pods using gin (definition

jsonb_path_ops);↪→

16 end $pods$;
17

18 raise notice '[+] Creating services schema';
19 do $services$ begin
20 create table if not exists services (
21 uid UUID primary key
22 , name text not null
23 , cluster_ip inet
24 , namespace text not null
25 , definition jsonb not null
26 );
27 create index idx_services_definition on services using gin (definition

jsonb_path_ops);↪→

28 end $services$;
29

30 raise notice '[+] Creating endpoints schema';
31 do $endpoints$ begin
32 create table if not exists endpoints (
33 uid UUID primary key
34 , name text not null
35 , namespace text not null
36 , definition jsonb not null
37 );
38 create index idx_endpoints_definition on endpoints using gin (definition

jsonb_path_ops);↪→

39 end $endpoints$;
40
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C PostgreSQL Table Layout

41 end $$
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D Logstash Pipeline
1 input {
2 http {
3 id => "flows"
4 port => 8080
5 codec => "json"
6 tags => ["flow"]
7 }
8 }
9

10 filter {
11

12 # Remove http fields
13 mutate {
14 remove_field => ["headers"]
15 }
16

17 # Check if the flow is targeting a clusterIP by doing a memcached
lookup↪→

18 memcached {
19 id => "clusterip_lookup"
20 hosts => ["insight-memcached"]
21 get => {
22 "%{[network][community_id]}" => "[@metadata][raw_clusterip_lookup]"
23 }
24 add_field => {
25 "[destination][orig_ip]" => "%{[destination][ip]}"
26 "[destination][orig_port]" => "%{[destination][port]}"
27 "[network][orig_community_id]" => "%{[network][community_id]}"
28 }
29 add_tag => [ "dst_is_clusterip" ]
30 }
31

32 if "dst_is_clusterip" in [tags] {
33 # Parse JSON
34 json {
35 id => "parse_clusterip_lookup"
36 source => "[@metadata][raw_clusterip_lookup]"
37 target => "[@metadata][clusterip_lookup]"
38 }
39

40 # Replace fields
41 mutate {
42 replace => {
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D Logstash Pipeline

43 "[network][community_id]" =>
"%{[@metadata][clusterip_lookup][community_id]}"↪→

44 "[destination][ip]" =>
"%{[@metadata][clusterip_lookup][replace_ip]}"↪→

45 "[destination][port]" =>
"%{[@metadata][clusterip_lookup][replace_port]}"↪→

46 }
47 }
48 }
49

50 jdbc_streaming {
51 id => "metadata_for_src_ip"
52 # Connection details
53 jdbc_driver_library => "/usr/share/extras/jdbc/postgresql-42.2.9.jar"
54 jdbc_driver_class => "org.postgresql.Driver"
55 jdbc_connection_string =>

"jdbc:postgresql://insight-kubestatestore-postgresql:5432/insight?user=insight"↪→

56

57 # Cache up to 512 entries for 10s as there is likely more than one
flow per IP and we don't want a query↪→

58 # for every incoming packet. (due to possible performance/bandwidth
limitations)↪→

59 cache_expiration => 10.0
60 cache_size => 512
61 use_cache => true
62

63 # Queries metadata from the kubernetes state store
64 statement => "
65 select
66 json_build_object(
67 'pods', coalesce(json_agg(pod_metadata) filter (where

pod_metadata is not null), '[]')↪→

68 , 'services', coalesce(json_agg(service_metadata) filter
(where service_metadata is not null), '[]')↪→

69 ) #>> '{}' as metadata
70 from
71 ((select
72 p.definition #> '{metadata}' as pod_metadata
73 , null as service_metadata
74 from pods p
75 where p.definition #> '{\"status\", \"podIPs\"}' @> ?::jsonb
76 )
77 union
78 (select
79 null as pod_metadata,
80 s.definition #> '{metadata}' as service_metadata
81 from services s
82 join endpoints e on (s.name, s.namespace) = (e.name,

e.namespace)↪→

83 where e.definition -> 'subsets' @> ?::jsonb
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84 )) as m
85 "
86

87 use_prepared_statements => true
88 prepared_statement_name => "metadata_for_src_ip"
89 target => "[@metadata][jdbc_results][metadata_for_src_ip]"
90 prepared_statement_bind_values => [ "[{\"ip\": \"%{[source][ip]}\"}]",

"[{\"addresses\": [{\"ip\": \"%{[source][ip]}\"}]}]" ]↪→

91 }
92

93 jdbc_streaming {
94 id => "metadata_for_dst_ip"
95 jdbc_driver_library => "/usr/share/extras/jdbc/postgresql-42.2.9.jar"
96 jdbc_driver_class => "org.postgresql.Driver"
97 jdbc_connection_string =>

"jdbc:postgresql://insight-kubestatestore-postgresql:5432/insight?user=insight"↪→

98 cache_expiration => 10.0
99 cache_size => 512

100 use_cache => true
101 statement => "
102 select
103 json_build_object(
104 'pods', coalesce(json_agg(pod_metadata) filter (where

pod_metadata is not null), '[]')↪→

105 , 'services', coalesce(json_agg(service_metadata) filter
(where service_metadata is not null), '[]')↪→

106 ) #>> '{}' as metadata
107 from
108 ((select
109 p.definition #> '{metadata}' as pod_metadata
110 , null as service_metadata
111 from pods p
112 where p.definition #> '{\"status\", \"podIPs\"}' @> ?::jsonb
113 )
114 union
115 (select
116 null as pod_metadata,
117 s.definition #> '{metadata}' as service_metadata
118 from services s
119 join endpoints e on (s.name, s.namespace) = (e.name,

e.namespace)↪→

120 where e.definition -> 'subsets' @> ?::jsonb
121 )) as m
122 "
123 use_prepared_statements => true
124 prepared_statement_name => "metadata_for_dst_ip"
125 target => "[@metadata][jdbc_results][metadata_for_dst_ip]"
126 prepared_statement_bind_values => [ "[{\"ip\":

\"%{[destination][ip]}\"}]", "[{\"addresses\": [{\"ip\":
\"%{[destination][ip]}\"}]}]" ]

↪→

↪→
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D Logstash Pipeline

127 }
128

129 # jsonb type is not supported by jdbc (-> logstash) therefore json is
passed as string and parsed back to json by logstash↪→

130 json {
131 id => "parse_metadata_for_src_ip"
132 source =>

"[@metadata][jdbc_results][metadata_for_src_ip][0][metadata]"↪→

133 target => "[source][kubernetes]"
134 }
135 json {
136 id => "parse_metadata_for_dst_ip"
137 source =>

"[@metadata][jdbc_results][metadata_for_dst_ip][0][metadata]"↪→

138 target => "[destination][kubernetes]"
139 }
140

141 # Extract first pod for easy querying using KQL
142 ruby {
143 id => "make_kubernetes_metadata_searchable"
144 path => "/usr/share/logstash/insight/extract_first_array_element.rb"
145 }
146

147 # GeoIP lookup
148 geoip {
149 id => "geoip_lookup_for_src_ip"
150 source => "[source][ip]"
151 target => "[source][geo]"
152 fields => ["CITY_NAME", "COUNTRY_NAME", "LOCATION",

"AUTONOMOUS_SYSTEM_NUMBER", "AUTONOMOUS_SYSTEM_ORGANIZATION"]↪→

153 }
154 geoip {
155 id => "geoip_lookup_for_dst_ip"
156 source => "[destination][ip]"
157 target => "[destination][geo]"
158 fields => ["IP", "CITY_NAME", "COUNTRY_NAME", "LOCATION",

"AUTONOMOUS_SYSTEM_NUMBER", "AUTONOMOUS_SYSTEM_ORGANIZATION"]↪→

159 }
160 }
161

162 output {
163 elasticsearch {
164 hosts => ["elasticsearch-master"]
165 index => "insight-1.0.0-%{+YYYY.MM.dd}"
166 manage_template => true
167 ilm_enabled => false
168 template => "/usr/share/logstash/insight/insight.template.json"
169 template_name => "insight-1.0.0"
170 template_overwrite => true
171 action => "index"
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172 }
173 }
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E Elasticsearch Index Template
1 {
2 "index_patterns": ["insight-1.0.0-*"],
3 "settings": {
4 "index": {
5 "number_of_shards": 3,
6 "number_of_replicas": 0,
7 "refresh_interval": "10s",
8 "codec": "best_compression",
9 "mapping": {

10 "total_fields": {
11 "limit": "10000"
12 }
13 },
14 "query": {
15 "default_field": [
16 "source.*",
17 "source.kubernetes.pod.labels.*",
18 "source.kubernetes.service.labels.*",
19 "destination.*",
20 "destination.kubernetes.pod.labels.*",
21 "destination.kubernetes.service.labels.*",
22 "network.*"
23 ]
24 }
25 }
26 },
27 "mappings": {
28 "numeric_detection": true,
29 "properties": {
30 "@timestamp": {"type": "date"},
31 "@version": {"type": "keyword"},
32 "type": {"type": "keyword"},
33 "host": {"type": "ip"},
34 "event": {
35 "type": "object",
36 "properties": {
37 "kind": {"type": "keyword"},
38 "category": {"type": "keyword"},
39 "action": {"type": "keyword"},
40 "dataset": {"type": "keyword"},
41 "duration": {"type": "long"},
42 "start": {"type": "date"},
43 "end": {"type": "date"}
44 }
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E Elasticsearch Index Template

45 },
46 "agent": {
47 "type": "object",
48 "properties": {
49 "hostname": {"type": "keyword"},
50 "type": {"type": "keyword"}
51 }
52 },
53 "source": {
54 "type": "object",
55 "properties": {
56 "kubernetes": {
57 "type": "object",
58 "properties": {
59 "metadata": {
60 "type": "object",
61 "properties": {
62 "pod": {
63 "type": "object",
64 "properties": {
65 "labels.*": {
66 "type": "keyword"
67 },
68 "annotations.*": {
69 "type": "keyword"
70 }
71 }
72 },
73 "service": {
74 "type": "object",
75 "properties": {
76 "labels.*": {
77 "type": "keyword"
78 },
79 "annotations.*": {
80 "type": "keyword"
81 }
82 }
83 },
84 "pods": {
85 "type": "nested",
86 "properties": {
87 "labels.*": {
88 "type": "keyword"
89 },
90 "annotations.*": {
91 "type": "keyword"
92 }
93 }
94 },
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95 "services": {
96 "type": "nested",
97 "properties": {
98 "labels.*": {
99 "type": "keyword"

100 },
101 "annotations.*": {
102 "type": "keyword"
103 }
104 }
105 }
106 }
107 }
108 }
109 },
110 "geo": {
111 "dynamic": true,
112 "type": "object",
113 "properties": {
114 "city_name": {"type": "keyword"},
115 "country_name": {"type": "keyword"},
116 "location": {"type": "geo_point"},
117 "ip": {"type": "ip"}
118 }
119 },
120 "ip": {"type": "ip"},
121 "port": {"type": "integer"},
122 "address": {"type": "keyword"},
123 "packets": {"type": "long"},
124 "bytes": {"type": "long"}
125 }
126 },
127 "destination": {
128 "type": "object",
129 "properties": {
130 "kubernetes": {
131 "type": "object",
132 "properties": {
133 "metadata": {
134 "type": "object",
135 "properties": {
136 "pod": {
137 "type": "object",
138 "properties": {
139 "labels.*": {
140 "type": "keyword"
141 },
142 "annotations.*": {
143 "type": "keyword"
144 }
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E Elasticsearch Index Template

145 }
146 },
147 "service": {
148 "type": "object",
149 "properties": {
150 "labels.*": {
151 "type": "keyword"
152 },
153 "annotations.*": {
154 "type": "keyword"
155 }
156 }
157 },
158 "pods": {
159 "type": "nested",
160 "properties": {
161 "labels.*": {
162 "type": "keyword"
163 },
164 "annotations.*": {
165 "type": "keyword"
166 }
167 }
168 },
169 "services": {
170 "type": "nested",
171 "properties": {
172 "labels.*": {
173 "type": "keyword"
174 },
175 "annotations.*": {
176 "type": "keyword"
177 }
178 }
179 }
180 }
181 }
182 }
183 },
184 "geo": {
185 "dynamic": true,
186 "type": "object",
187 "properties": {
188 "city_name": {"type": "keyword"},
189 "country_name": {"type": "keyword"},
190 "location": {"type": "geo_point"},
191 "ip": {"type": "ip"}
192 }
193 },
194 "ip": {"type": "ip"},
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195 "port": {"type": "integer"},
196 "address": {"type": "keyword"},
197 "packets": {"type": "long"},
198 "bytes": {"type": "long"}
199 }
200 },
201 "network": {
202 "type": "object",
203 "properties": {
204 "community_id": {"type": "keyword"},
205 "bytes": {"type": "long"},
206 "packets": {"type": "long"},
207 "type": {"type": "keyword"}
208 }
209 },
210 "tags": {
211 "type": "keyword"
212 }
213 }
214 }
215 }
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F Test Application Deployment
1 ---
2 apiVersion: apps/v1
3 kind: Deployment
4 metadata:
5 name: whoami-deployment
6 labels:
7 app: whoami
8 spec:
9 replicas: 6

10 selector:
11 matchLabels:
12 app: whoami
13 template:
14 metadata:
15 labels:
16 app: whoami
17 spec:
18 containers:
19 - name: whoami
20 image: containous/whoami:latest
21 ports:
22 - containerPort: 80
23 ---
24 apiVersion: v1
25 kind: Service
26 metadata:
27 name: whoami-service
28 spec:
29 selector:
30 app: whoami
31 ports:
32 - protocol: TCP
33 port: 80
34 targetPort: 80
35 ---
36 apiVersion: extensions/v1beta1
37 kind: Ingress
38 metadata:
39 name: whoami-ingress
40 spec:
41 rules:
42 - host: whoami.insight.xvzf.tech
43 http:
44 paths:
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F Test Application Deployment

45 - path: /
46 backend:
47 serviceName: whoami-service
48 servicePort: 80
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G Test Canary Deployment
1 ---
2 apiVersion: v1
3 kind: Namespace
4 metadata:
5 name: whoami-w-canary
6 annotations:
7 insight: "true"
8 ---
9 apiVersion: apps/v1

10 kind: Deployment
11 metadata:
12 name: whoami-deployment
13 namespace: whoami-w-canary
14 labels:
15 app: whoami
16 spec:
17 replicas: 2
18 selector:
19 matchLabels:
20 app: whoami
21 template:
22 metadata:
23 labels:
24 app: whoami
25 spec:
26 containers:
27 - name: whoami
28 image: containous/whoami:latest
29 ports:
30 - containerPort: 80
31 ---
32 apiVersion: v1
33 kind: Service
34 metadata:
35 name: whoami-service
36 namespace: whoami-w-canary
37 spec:
38 selector:
39 app: whoami
40 ports:
41 - protocol: TCP
42 port: 80
43 targetPort: 80
44 ---
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G Test Canary Deployment

45 apiVersion: apps/v1
46 kind: Deployment
47 metadata:
48 name: whoami-new-deployment
49 namespace: whoami-w-canary
50 labels:
51 app: whoami-new
52 spec:
53 replicas: 2
54 selector:
55 matchLabels:
56 app: whoami-new
57 template:
58 metadata:
59 labels:
60 app: whoami-new
61 spec:
62 containers:
63 - name: whoami
64 image: containous/whoami:latest
65 ports:
66 - containerPort: 80
67 ---
68 apiVersion: v1
69 kind: Service
70 metadata:
71 name: whoami-new-service
72 namespace: whoami-w-canary
73 spec:
74 selector:
75 app: whoami-new
76 ports:
77 - protocol: TCP
78 port: 80
79 targetPort: 80
80 ---
81 apiVersion: extensions/v1beta1
82 kind: Ingress
83 metadata:
84 name: whoami-ingress
85 namespace: whoami-w-canary
86 annotations:
87 traefik.ingress.kubernetes.io/service-weights: |
88 whoami-service: 90%
89 whoami-new-service: 10%
90

91 spec:
92 rules:
93 - host: whoami-canary.insight.xvzf.tech
94 http:
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95 paths:
96 - path: /
97 backend:
98 serviceName: whoami-service
99 servicePort: 80

100 - path: /
101 backend:
102 serviceName: whoami-new-service
103 servicePort: 80
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