
STL SYSTEMTECHNIKLABOR

Reverse Engineering The Cauzin Softstrip

Michael Reimsbach

Technical Report – STL-TR-2018-03 – ISSN 2364-7167

stl.htwsaar.de

https://stl.htwsaar.de/
https://stl.htwsaar.de

Technische Berichte des Systemtechniklabors (STL) der htw saar
Technical Reports of the System Technology Lab (STL) at htw saar
ISSN 2364-7167

Michael Reimsbach: Reverse Engineering The Cauzin Softstrip
Technical report id: STL-TR-2018-03

First published: October 2018
Last revision: October 2018
Internal review: John Aycock, André Miede

For the most recent version of this report see: https://stl.htwsaar.de/

Title image source: John Aycock

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. http://creativecommons.org/licenses/by-nc-nd/4.0/

htw saar – Hochschule für Technik und Wirtschaft des Saarlandes (University of Applied Sciences)
Fakultät für Ingenieurwissenschaften (School of Engineering)
STL – Systemtechniklabor (System Technology Lab)
Prof. Dr.-Ing. André Miede (andre.miede@htwsaar.de)
Goebenstraße 40
66117 Saarbrücken, Germany
https://stl.htwsaar.de

https://stl.htwsaar.de/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://stl.htwsaar.de

Master’s Thesis

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science (M. Sc.)

at Hochschule für Technik und Wirtschaft des Saarlandes

in Applied Informatics

Reverse Engineering The Cauzin Softstrip

submitted by

Michael Reimsbach

supervised by

Prof. Dr.-Ing. André Miede

Prof. Dr. John Aycock

University of Calgary, Alberta (Canada), 2018-10-31

Declaration

I declare that this thesis has been composed solely by myself and that it has not been
submitted, in whole or in part, in any previous application for a degree. Except where
states otherwise by reference or acknowledgement, the work presented is entirely my
own.

University of Calgary, Alberta (Canada), 2018-10-31

Michael Reimsbach

iii

Abstract

The Cauzin Softstrip is one of the first two-dimensional bar codes and was released in
1985 by Cauzin Systems. It could be used for encoding all kind of digital data such as
software, text, or graphics. The bar codes were printed on paper and served as an inex-
pensive distribution medium compared to floppy disks. Unfortunately, the Softstrip was
not as successful as anticipated and disappeared with the Cauzin Softstrip Reader around
1987. Softstrips can be found in old computer magazines, computer science books or as
scanned collections on the internet. However, they are useless without access to a Cauzin
Softstrip Reader. Obtaining a working Softstrip Reader is already extremely difficult and
will most likely be impossible in the following years. In order to preserve the encoded
data, this work examines the bar code format and creates a digital Softstrip reader, mak-
ing Softstrips accessible for people without an optical reader. Furthermore, it highlights
the challenges while dealing with such an old bar code and shows which results can be
expected, which might be helpful for similar projects in the future.

A decoding strategy with the use of a Convolutional Neural Network is presented and
evaluated on a corpus of various Softstrips, including digital generated Sofstrips and
scanned Softstrips from books, magazines and StripWares. The presented decoding strat-
egy is able to decode 91% of the 1230 Softstrips in the corpus.

v

Zusammenfassung

Der Cauzin Softstrip ist einer der allerersten zwei-dimensionalen Barcodes. Er wurde
von Cauzin Systems entwickelt und im Jahr 1985 veröffentlicht. Er konnte dazu genutzt
werden um jegliche Art von digitalen Daten wie z.B. Software, Texte oder Grafiken zu
enkodieren. Anschließend wurden die Barcodes auf Papier gedruckt und dienten, im
Gegensatz zur Diskette, als kostengünstiges Austauschmedium. Bedauerlicherweise war
der Cauzin Softstrip nicht so erfolgreich wie erhofft und verschwand bereits nach kurzer
Zeit wieder. Man kann Softstrips noch immer in alten Computer-Magazinen, Informatik-
Büchern oder als Sammlung im Internet finden. Allerdings sind diese nutzlos ohne einen
Cauzin Softstrip Reader. Es ist bereits jetzt schwierig einen funktionierenden, gebrauchten
Softstrip Reader zu finden und es wird in den kommenden Jahren nicht leichter werden,
wenn nicht sogar unmöglich. Damit die enkodierten Daten nicht in Vergessenheit geraten,
untersucht diese Thesis das Cauzin Softstrip Format und erstellt einen digitalen Softstrip
Reader. Darüber hinaus werden die Herausforderungen aufgezeigt, die beim Umgang mit
solch einem alten Barcode entstehen können. Außerdem wird gezeigt, welche Resultate
erwartet werden können. Diese Erfahrungen können für ähnliche, zukünftige Projekte
nützlich sein.

Es wird eine Dekodierungs-Strategie präsentiert, die auf einem Convolutional Neural
Network aufbaut. Anschließend wird diese auf einer Softstrip-Sammlung evaluiert, die
gescannte Softstrips und digital generierte Softstrips enthält. Die Scans stammen aus
Büchern, Magazinen und StripWares. Die vorgestellte Dekodierungs-Strategie ist in der
Lage 91% der 1230 zur Verfügung stehendenen Softstrips zu dekodieren.

vii

You call this archaeology?

— Indiana Jones and the Last Crusade

Acknowledgment

I would like to express my gratitude to my supervisor Prof. Dr.-Ing. André Miede who en-
couraged me to conduct my research at the University of Calgary and who also arranged
this collaboration.

I would also like to thank Prof. Dr. John Aycock who welcomed me in Calgary and
introduced me to a world of almost forgotten computer relics. It was a pleasure to work
with him and I have greatly benefited from his feedback during our meetings.

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Objectives . 3
1.3 Overview . 3

2 Fundamentals 7
2.1 Convolutional Neural Networks . 7

2.1.1 Feedforward Networks . 7
2.1.2 Activation Function . 8
2.1.3 Loss Function and Optimizer . 9
2.1.4 The Convolution Operation . 10
2.1.5 Feature Map . 10
2.1.6 Pooling . 11
2.1.7 Overfitting . 11

2.2 Image Processing . 13
2.2.1 Image Representation . 13
2.2.2 Dilation and Erosion . 14
2.2.3 Convex Hull . 15
2.2.4 Thresholding . 15
2.2.5 Edge Detection . 16
2.2.6 Hough Transform . 18

2.3 Summary . 20

3 Analysis 21
3.1 Barcodes . 21
3.2 PDF-417 . 22

3.2.1 Symbology . 22
3.2.2 Recognition . 23
3.2.3 Decoding . 24

3.3 The Softstrip Symbology . 24
3.3.1 Basics . 24
3.3.2 Horizontal Synchronization . 26
3.3.3 Vertical Synchronization . 26
3.3.4 Data Information . 27

3.4 Error Detection . 29
3.4.1 Parity Check . 29
3.4.2 Checksum . 29

3.5 Dataset . 30
3.5.1 Digital Generated Softstrips . 30
3.5.2 Scanning Distortions . 30
3.5.3 StripWares . 30
3.5.4 Softstrips Animated Algorithms . 32
3.5.5 Cauzin Softstrip Application Notes and Marketing Material Collection 32
3.5.6 Magazine Collection . 32

xi

3.6 Summary . 33

4 Related Work 35
4.1 OSCAR . 35
4.2 The CauzCoin Challenge . 36

4.2.1 Window Decoding . 36

5 System Design 39
5.1 Softstrip Recognition . 39
5.2 User Interface . 39
5.3 Horizontal Synchronization Section . 40
5.4 Row Extraction . 41

5.4.1 Algorithmic Approach . 41
5.4.2 CNN Approach . 42

5.5 Row Decoding . 42
5.5.1 Algorithmic Approach . 42
5.5.2 CNN Approach . 43

5.6 Data Export . 43
5.7 Software Architecture . 43
5.8 Summary . 44

6 Implementation 47
6.1 Technologies . 47
6.2 Graphical User Interface . 48
6.3 Row Extraction . 49

6.3.1 Algorithmic Approach . 49
6.3.2 CNN Approach . 51

6.4 Row Decoding . 54
6.4.1 Algorithmic Approach . 55
6.4.2 CNN Approach . 56

6.5 Summary . 58

7 Evaluation 61
7.1 Accuracy . 62
7.2 Multiple Rows . 63
7.3 Runtime Performance . 64
7.4 Limitations . 66
7.5 Summary . 66

8 Discussion & Future Work 69
8.1 Datastrip . 69
8.2 Conclusion . 72
8.3 Future Work . 73

8.3.1 Softstrip Recognition . 73
8.3.2 Optical vs Digital . 73

Bibliography 75

List of Figures 83

List of Tables 84

xii

Listings 84

Abbreviations 85

A File Information 89

B Contents of the attached CD 91

xiii

1 Introduction

1.1 Motivation

We are living in a society where computers have become ubiquitous. Any information is
just a click away and communication around the globe is easier than ever before. There
are different ways to encode information; one of them is by using bar codes. Two of the
most successful bar codes today are the Universal Product Code (UPC) for identifying
products and the Quick Response (QR) code which is used in many different areas such
as manufacturing, health care and marketing [1].

This thesis focuses on an almost forgotten relic, the Cauzin Softstrip, a two-dimensional
bar code format released in 1985 by Cauzin Systems. All kind of digital data, such as
graphics, software or text files can be encoded as a Cauzin Softstrip and then be printed
on paper (see figure 1.1). In order to understand the reasons behind the Softstrip, it is
helpful to be familiar with the home computer revolution in the late seventies and early
eighties.

The first microcomputer was arguably the Altair 8800 released by MITS in 1974 [2]. How-
ever, it was far away from what we call a Personal Computer (PC) today. First of all, it
could be purchased as a build-it-yourself kit for under $400 and had to be assembled be-
fore it could be used. There was neither a keyboard nor a monitor. User input was entered
by using switches on the front panel and the output was shown by multiple Light Emit-
ting Diodes (LEDs). Obviously, the early home computers were designed for computer
enthusiasts instead of the mass market. This changed, however, with the introduction of
the 6502 8-bit microprocessor, developed by MOS Technologies, in 1975. Before, micro-
processors were expensive: the Intel 8008, for example, was sold for $360 in 1974 [3]. In
contrast, the 6502 was considerably less expensive and was sold for only $25 [4]. Soon
many new home computers using the 6502 microprocessor (or variants of the 6502) were
released in North America, such as the Apple II in 1977 [5], the Commodore PET in 1977
[6] and even the home video gaming console Nintendo Entertainment System in 1983 [7].

Even though PCs were becoming more affordable and targeting the mass market instead
of computer enthusiasts, they still required a lot of technological knowledge. For instance,
PC handbooks often included a section about BASIC programming, teaching users how
to program their own software [5]. It was also common for computer magazines to release
software in the form of source code for readers. In order to use the programs, people had
to not only type in the code but also compile it in some cases. One can imagine that typing
in the source code is a tedious task, where even a single mistake can result in an error.
Finding the error can be even more time-consuming, especially if the source code was in
machine language [8].

To make things even worse, storage devices were usually not part of a PC and had to
be purchased separately by the user. This means typing in the source code had to be
repeated every time a user wanted to use the program, unless they had access to a hard

1

1 Introduction

drive, cassette tape deck or floppy disk drive to save the program. However, external
storage devices were expensive. For instance, the DISK II, a floppy disk system for the
Apple II, was introduced in 1978 and could be pre-ordered for $495 [9]. The regular price
after its launch was $595 [10]. Of course floppy disks were needed as well. The price for a
box of 10 diskettes (5 1/4" and 8") ranged from $29 to $57 in 1980 [10]. That is when some
companies came up with a new solution for storing digital data. They used bar codes.

One of the earliest bar codes for encoding software was the Paperbyte in 1977 [11]. The
Paperbyte bar codes were printed in Paperbyte books and Byte magazines, where they
encoded assembly programs. A few years later, in 1983, the Optical Scanning Reader
(OSCAR) bar code was released for encoding software in bar code format in the Databar
magazine (see section 4.1 for more details). Unfortunately, only a single issue of the
Databar magazine was ever published [12].

The most successful bar code for encoding software from this era is probably the Cauzin
Softstrip. The Softstrip encoding software, the Stripper, and the optical reader, the Cauzin
Softstrip Reader, were available for about $220. It was compatible with the IBM-PC, Apple
II and MacIntosh. The System was promoted with multiple demo Softstrips, among them
John Romero’s1 game Bongo’s Bash [13]. After its release, stores started selling computer
programs as Softstrips. Besides that, Softstrips were advertised for several use cases [14].
For instance, they could be printed next to human readable data on paper, allowing people
to scan the bar code instead of typing in the data into their computer. This not only saves
time — scanning a single Softstrips takes about 30 seconds [15] — but also reduces the
number of errors that could occur while typing the data in. For these reasons, computer
magazines started adopting the Cauzin Softstrip and printed it next to their source code.
Some of the magazines which published the Cauzin Softstrip are Byte [16], II Computing
[17] and the inCider [18]. In addition, they can be found in computer science books, such
as Animated Algorithms: A Self-teaching Course in Data Structures and Fundamental
Algorithms [19].

The Softstrip was also interesting for publishers because it was an inexpensive medium
for distributing data. Instead of buying expensive floppy disks and saving the data on
them, it could simply be printed and then published. Another useful feature of the Cauzin
Softstrip is that it enables users to transfer data between different operating systems. For
example, a Softstrip could be created on an IBM PC and then be read again on an Apple
II.

Fascinating, isn’t it? Anything you can do with disks can be done with the
Softstrip data system - faster, easier and at lower cost - ON PAPER
— Softstrip System: The new advantage in business computing [14]

Although the MacUser magazine awarded the Cauzin Softstrip as the most innovative
concept in 1986 [20] and Cauzin Systems had plans to use the Cauzin Softstrip on cards
such as credit or calling cards [21], the technology was not as successful as anticipated
and eventually disappeared a few years after its release in 1985. One reason for the failure
might be that floppy disks and modems became more affordable, therefore the need for
bar codes as a distribution medium decreased. Additionally, the Softstrip is impractical
for larger data. A single Softstrip can store up to 5500 bytes. If the data was larger, it had to
be divided into multiple Softstrips. This requires not only the user to adjust the Softstrip

1John Romero is a programmer, game designer and co-founder of id Software. He worked on many revolu-
tionary games such as Doom, Quake and Wolfenstein.

2

1.2 Thesis Objectives

Reader again for each Softstrip, but also increases the scanning time [15]. Lastly, the Cauzin
Softstrip certainly suffered a chicken-and-egg problem [22]. On the one hand, the limited
number of available Softstrips did not attract enough customers to buy a Cauzin Softstrip
Reader, whereas on the other hand magazines stopped publishing Softstrips because
the target group was not large enough. As a result, Softstrips disappeared and Cauzin
Systems stopped producing the Cauzin Softstrip Reader long ago, before the company
finally disappeared as well.

1.2 Thesis Objectives

At the time of writing it is already difficult to find a working Cauzin Softstrip Reader. The
only option to decode the Softstrips without access to a Cauzin Softstrip Reader is to do
it by hand which is not only a time-consuming but also an error-prone task. A Softstrip
had to be decoded manually for this thesis to locate a decoding error. This process took
about eight hours until the checksum finally confirmed that the decoding was successful.
In order to preserve the Softstrips and the encoded content, this thesis reverse engineers
the Cauzin Softstrip and creates a digital Softstrip reader. During the development of
the system, the challenges while dealing with scans of old bar codes are highlighted and
appropriate strategies to overcome them are presented. The following questions must be
answered at the end:

1. Is it possible to decode the Cauzin Softstrip with a digital reader?

2. What are the main difficulties while decoding the Cauzin Softstrip?

3. What are the limitations of the digital reader?

1.3 Overview

This thesis is divided into following chapters:

Chapter 2 explains the fundamental concepts of image processing and Convolutional
neural networks (CNNs) which are necessary to understand the following chapters.

Chapter 3 gives an introduction to bar codes in general and explains the decoding process
of the PDF-417 bar code. After that, the Cauzin Softstrip and the available Softstrip
corpus is analyzed.

Chapter 4 presents the digital decoder for the OSCAR bar code and the CauzCoin chal-
lenge.

Chapter 5 presents the design of the digital Softstrip decoder. A general architecture is
presented and a solution for each component is presented.

Chapter 6 shows that the system presented in the previous chapter can be implemented.
The used technologies are presented and more implementation details are provided
for each component.

Chapter 7 evaluates the implemented solution. The different decoding methods are com-
pared with each other and their performance on the different datasets is evaluated.
In addition, the runtime performance is evaluated and the limitations of the decoder
are highlighted.

3

1 Introduction

Figure 1.1: Cauzin Softstrip Advertisement
Cauzin Softstrip Advertisement [23]

4

1.3 Overview

Chapter 8 explains what happened with the Cauzin Softstrip after is disappeared. It also
discusses potential future work and finally draws a conclusion.

5

2 Fundamentals

This chapter covers the fundamental concepts of image processing (section 2.2) and CNNs
(section 2.1) which are necessary to understand the following chapters in this thesis. Read-
ers who are familiar with those topics might skip this chapter.

2.1 Convolutional Neural Networks

CNNs have become the state of the art method for solving computer vision tasks [24].
Although CNNs were already used in 1998 by LeCun et al. for recognizing handwritten
digits, where they achieved remarkable results [25], the hype about CNNs started after
Krizhevsky et al. won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
with a CNN in 2012 [26]. The dataset in this challenge contained 10,000,000 labeled im-
ages with more than 10,000 object categories. Krizhevsky et al. classified the images with
a top-5 test error rate of 15.3%, whereas the second best top-5 error rate achieved 26.2%
[26]. Since then CNNs have been used for many different tasks such as learning how to
play Atari games [27] or learning how to cook by watching YouTube videos [28].

One reason for their success is how they handle feature engineering. Feature engineering
is a crucial step for the success of a classification technique where characteristic proper-
ties are selected to predict a class. For instance, a useful feature to recognize a Simpsons
character might be the number of yellow pixels. However, in many cases it turns out to
be difficult to find useful features which might result in a poor performing classifier. By
contrast, CNNs are extremely good at learning useful features by themselves [29]. Ad-
ditionally, they are able to learn a hierarchical representations of these features [30] and
once the CNN has learned the different patterns, it is able to detect them at any location.
For example, the first layer could scan the image for straight lines. The second layer could
combine the previous lines to scan the image for shapes like rectangles and the following
layer could use those shapes to detect a house.

Due to the aforementioned reasons, CNNs are used in this work for classifying dibits
and extracting the rows from the bar code. This section explains first how feedforward
networks work and then highlights the characteristics of CNNs.

2.1.1 Feedforward Networks

The name feedforward network comes from the fact that information can only flow in
one direction, i.e., forward [24]. By contrast, a node’s output can be fed into itself again
in a Recurrent neural network (RNN) [24]. A simple feedforward network is the Single
Layer Perceptron (SLP). Its structure is shown in figure 2.1. Each input variable xi has a
corresponding weight wi. The variable x0 is always set to 1 therefore w0 functions as a
constant term — the bias. The weighted sum is calculated with equation 2.1 and is the
input for the activation function f (see equation 2.2). Activation functions are covered in

7

2 Fundamentals

1

x1

x2

...

xn

w0

w1

w2

...

Previous
Layer

wn

∑ f (∑) Output

Weights

Weighted
Sum

Activation
Function

Constant
x0

Figure 2.1: Single Layer Perceptron (SLP)

detail in section 2.1.2. Figure 2.3 shows two example activation functions.

z =
n

∑
i=0

wixi (2.1)

y = f (z) (2.2)

A typical Multilayer perceptron (MLP) is shown in figure 2.2. The first layer is the input
layer which feeds the data into the network. Then, one ore more hidden layers follow. The
number of hidden layers, also called depth, depends on the complexity of the task and is
usually determined experimentally [29]. MLPs with many hidden layers are often called
deep neural networks or deep learning models [24]. The final layer outputs the computed
result for the given data.

x1

x2

x3

x4

Output

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 2.2: Fully connected neural network with two hidden layers.

2.1.2 Activation Function

Activation functions are usually non-linear functions used in single perceptrons to ap-
proximate complex functions [29]. A perceptron with a linear activation function is only
able to perform linear transformations (see equation 2.1). As a result, it is not able to
learn more complex models than a linear regression. Even a network with multiple linear
perceptrons is not more powerful since it can be replaced by a single linear perceptron

8

2.1 Convolutional Neural Networks

[29]. The most popular activation function is the Rectified Linear Unit (ReLU) function
(see figure 2.3). The reason for this is that it allows faster learning [31]. The last layer in
a MLP outputs the final result, so the selected activation function in this layer directly
affects the result. The selection depends on the task, for instance, if the task is to perform
a binary classification, a sigmoid function is useful, whereas a softmax function is more
appropriate for multiclass classification [29].

−6 −4 −2 0 2 4 6

0.5

1

x

f (x) = 1
1+e−x

Logistic Function

−6 −4 −2 0 2 4 6

2

4

6

x

f (x) = max(0, x)

ReLU Function

Figure 2.3: Activation Functions

2.1.3 Loss Function and Optimizer

Loss functions, also called error or cost functions, are used to measure the difference be-
tween the predicted value and the true value [24]. A popular loss function is the mean
squared error (see equation 2.3), where Yi is the predicted and Ŷi the true value. Other loss
functions exist and are chosen according to the task. The smaller the loss the better the
network’s performance, so the goal is to minimize the loss function. One way to achieve
this is by using the optimization algorithm gradient descent which was originally devel-
oped by Augustin-Louis Cauchy in 1847 [32].

MSE(x) =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (2.3)

This optimization process is also known as learning or the training. The gradient descent
algorithm updates the parameters (weights) in each iteration to the direction of the nega-
tive gradient with a learning rate η which determines the stepping size to this direction.
This is repeated until the algorithm converges to a (local) minimum [33]. The learning rate
η has to be chosen carefully; if η is too large it can miss a (local) minimum. On the other
hand, if η is too small, it requires a lot of iterations until a (local) minimum is reached.
Other optimization algorithms such as Adam [34] and RMSProp [35] exist.

MLPs use the backpropagation algorithm to compute the gradients efficiently [36]. In
the first step, a forward propagation is applied for computing the predicted values. The
predictions are then compared to the true values and the error is calculated. This error is
then back propagated in order to determine how much every perceptron contributed to

9

2 Fundamentals

the error. Therefore, the local gradients are calculated with equation 2.4 with l as the layer,
k the perceptron on this layer, wk,j the weight from j to k, η the learning parameter and a
the output of the activation function. Subsequently, the weights are updated with equa-
tion 2.5. The whole forward-backward process is repeated until either a defined number
of iterations is reached or a desired error.

δ
(l−1)
j = ∑

k
w(l−1)

k,j δ
(l)
k a(l−1)

j (1− a(l−1)
j) (2.4)

w(l)
i,j = w(l)

i,j − ηa(l)j δ
(l+1)
i (2.5)

2.1.4 The Convolution Operation

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(m, n)K(i−m, j− n) (2.6)

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(m, n)K(i + m, j + n) (2.7)

The discrete convolution operation is shown in equation 2.6. The inputs are an image I
with dimensions i, j and a kernel K, also called filter, with dimensions m and n [24]. The
result of the convolution operation is often called a feature map [24]. Equation 2.7 shows
a very similar function called cross-correlation which is used in many machine learning
libraries but also called convolution [24]. The main difference between the convolution
and cross-correlation operation is that the kernel is flipped in the convolution operation
(see figure 2.4).

a b c

d e f

g h i

i h g

f e d

c b a

Figure 2.4: Two 3x3 kernels. The right kernel is a flipped representation of the left kernel.

Figure 2.5 shows how the convolution operation without kernel flipping is applied. The
blue matrix represents a 3x3 image (in this example pixel values are either 1 or 0) and
the red matrix represents a 2x2 kernel. The kernel is then moved across the image with
a defined stride. In this example the stride is one, which means the kernel is moved by
one pixel in every step, and the kernel is always inside the image. However, it is also
possible that parts of the kernel are outside of the image. In this case the image needs to
be padded. Every time the kernel is moved, the dot product between the kernel and the
overlapping image is calculated and inserted into the corresponding position in the green
matrix. Figure 2.6 shows the result of a filter for detecting edges. Convolution is the key
operation in CNNs and is used to learn the different features in an image [29].

2.1.5 Feature Map

Multiple kernels (or filters) are used to detect certain features. Each application of the
convolution operation creates a different feature map from the same input image, which
shows where the defined features were detected [29]. The kernel weights for detecting
features are determined during the training process.

10

2.1 Convolutional Neural Networks

1 0 1

0 1 0

1 1 0

1 0 1

0 1 0

1 1 0

1 0 1

0 1 0

1 1 0

1 0 1

0 1 0

1 1 0

1 0 1

0 1 0

1 1 0

a b

c d

a+d b+c

b+c+d a+c

Figure 2.5: Example of the convolution operation.

Figure 2.6: Convolution for Edge Detection

2.1.6 Pooling

A pooling layer aggregates the information of nearby values [29]. Therefore, a pooling
window is slid with a defined stride across a two-dimensional feature map. If the stride
is smaller than the window, overlapping pooling is applied. At every location, the values
inside the window are combined. This can be done in various ways, for instance by se-
lecting the maximum value or computing the average value [37]. The result is a shrunken
two-dimensional representation which still contains the relevant feature information but
not the exact spatial position. The reason for applying pooling is to reduce the number
of parameters and therefore reduce the computational cost [29]. Furthermore, it is a more
general representation of the image and therefore helps for preventing overfitting [29].

2.1.7 Overfitting

In general, the data is split into three different sets: training, test and validation [29]. The
training set is used to train the neural network, i.e., determining the weights. In the next
step the unseen validation set is used to tune hyperparameters like the number of hidden
layers or the number of perceptrons in those layers. Finally, the overall performance is
evaluated on the unseen test set.

K-fold Cross-Validation is a different method for evaluating the model’s performance
[29]. In this case the data is separated into k partitions with equal size. The model is then
trained with k − 1 partitions and tested on 1 partition. This process is repeated k times
and each subset is used once. At the end, the loss of all iterations is averaged.

11

2 Fundamentals

A model is overfitted if it is not able to generalize and only performs well on the training
data but poorly on unseen data [29]. This can happen if the training data set is too small
and not representative of the overall data. For example, if the task is to distinguish ba-
nanas from apples and the training data set only includes ripe yellow bananas and green
apples, the model might not be able to recognize an unripe green banana because the
model associates the color green only with apples. Overfitting can also be the result of
too much training. In this case, the model starts adjusting the parameters until it is also
able to predict noisy data in the training data. Therefore, it is beneficial having more train-
ing data and stop training as soon as the model’s performance on the test data set declines.

A complex architecture is also very likely to overfit. Instead of learning the right parame-
ters, the model simply memorizes which data point corresponds to which class. One way
for keeping the architecture simple is by using a penalty for more complex models. This
is called regularization. Two popular methods are LASSO (see equation 2.9) and Ridge
Regression (see equation 2.8). In both cases a term proportional to the weight parameters
is added to the loss function. The λ parameter determines the penalty influence of the
weights. The key difference between the two methods is that LASSO uses only a subset
of the parameters since many parameters become 0 [24].

Ridge = Loss + λ
m

∑
j=1

w2
j (2.8)

LASSO = Loss + λ
m

∑
j=1
|wj| (2.9)

Another way for avoiding overfitting in neural networks is to use Dropout [38]. In each
iteration a number of perceptrons are randomly selected and removed (including their
ingoing and outgoing edges).

12

2.2 Image Processing

2.2 Image Processing

The Cauzin Softstrip collection consists of digital images. In order to process the encoded
information, a variety of image manipulation techniques have to be applied. This section
explains the most relevant concepts which are necessary to understand this work.

2.2.1 Image Representation

A digital image can be mathematically described as a two-dimensional function f (x, y)
with the discrete and finite spatial coordinates x and y [39]. Each point, called a pixel, (x, y)
is mapped to a discrete intensity value — the color. The intensity dimension depends on
the color mode. Black & white (binary) and grayscale images both use one-dimensional
intensity values while color models such as RGB, CMYK and HSV use three dimensional
intensity values.

The pixels in a binary image are either black (0) or white (1) [40]. Grayscale images consist
only of different gray levels. In the case of 8-bit grayscale images, each pixel is mapped to
a value between 0 (black) and 255 (white) [40]. The conversion from a grayscale image to
a binary image is explained in section 2.2.4.

Many different color models exist, the most common ones are RGB, CMYK and HSV.
Every color in the RGB model is a combination of the colors red, green and blue [41].
Each color channel has a total of 256 possible intensity values (for 8-bit RGB). RGB uses
so-called additive color mixing, i.e., new colors are produced by overlapping at least two
of the three colors red, blue and green [41]. The color white is created by overlapping all
three colors with full intensity (255, 255, 255). The pixels from a RGB image can be simply
converted to a grayscale image with equation 2.10 [42][43].

GRAY = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B (2.10)

Two additive colors can be combined to a subtractive color [41]. The combination of blue
and green produces the subtractive color cyan; the combination of red and green produces
the subtractive color yellow and the combination of blue and red produces the subtractive
color magenta. These colors are used in the CMYK color model and if combined again
produce the additive colors from the RGB color model [41]. The CMYK model uses sub-
tractive mixing, i.e., the colors cyan, magenta and yellow block wavelengths to create new
colors [41]. For example, cyan blocks the colors blue and green. The combination of cyan,
magenta and yellow creates the color black. The CMYK color model is usually used for
printing. In order to save printing costs, a separate black ink was added which is the K in
CMYK [41].

A color model which is more similar to the human visual perception is the Hue-Saturation-
Value (HSV) model [41]. The hue defines the pure color. The value determines the bright-
ness, and the saturation defines how much the color differs from a neutral gray [41].

Histograms are used to illustrate the intensity distributions in images [44]. A histogram
consists of two dimensions: the x-axis for the intensity values and the y-axis for the num-
ber of occurrences. The location of the intensity values in the image are not relevant for
the distribution. If the image uses a color model, a histogram for each color channel can
be generated [45].

13

2 Fundamentals

2.2.2 Dilation and Erosion

Dilation and erosion belong to the class of morphological image processing techniques
and are useful for noise reduction [46]. They can operate on binary images as well as on
grayscale images [47]. However, this section focuses only on the binary operations. The
dilation operation is denoted by the operator⊕ (see equation 2.11) and adds new pixels to
object boundaries, i.e., lets them grow [39]. In contrast, the erosion operation is denoted by
the operator	 (see equation 2.11) and removes pixels from object boundaries, i.e., shrinks
them [39].

Both operations use a combination of convolution and thresholding [48]. The kernel in
the convolution operation is called the structuring element and can be of any shape. One
cell in the structuring element is defined as origin, or anchor point, and is moved along
the image during the convolution operation. [48] defines the operations as:

f ⊕ s = θ(c, 1) (2.11)

f 	 s = θ(c, S) (2.12)

With c as the result of the convolution operation:

c = f ⊗ s (2.13)

Where f is the image, s the structuring element and S its size. The thresholding operation
is defined as:

θ(f , t) =





1 if f ≥ t

0 otherwise
(2.14)

Figure 2.7 illustrates the erosion and dilation operation on a Cauzin Softstrip segment.
It is important to note that the objects are the white and not the black areas. As one can
see, the eroded operation removed many of the white dots inside the black areas whereas
the dilated operation increased the white dots. Dilation and erosion can be combined to
create two new operations: opening (see equation 2.15) and closing (see equation 2.16)
[39].

f ◦ s = (f 	 s)⊕ s (2.15)

f • s = (f ⊕ s)	 s (2.16)

Figure 2.7: Dilation and Erosion
1: original Softstrip; 2: dilated Softstrip; 3: eroded Softstrip

14

2.2 Image Processing

2.2.3 Convex Hull

The convex hull (see figure 2.8) for a set of points is the smallest convex polygon where
each point is either inside the polygon or on its boundary [49]. A polygon is convex if [49]:

1. It is a simple polygon, i.e., it is not self-intersecting.

2. All possible edges between two vertices are either inside the polygon or on its
boundary.

Algorithms for computing the convex hull are sometimes referred to as "gift wrapping"
algorithms [50] which is an intuitive description of the convex hull. Two popular algo-
rithms for computing the convex hull are Graham’s scan [51] and Jarvis march [52]. With n
being the number of points and h the number of points on the convex hull, Graham’s scan
runs in O(n log n), whereas Jarvis march runs in O(nh) which, in the worst case, can fall
to O(n2). A more performant alternative which runs in O(n) is Sklansky’s algorithm [53],
an extended version of his first algorithm published in 1972 [54]. Although it was proven
that both algorithms by Sklansky do not always work [55][56], they are implemented in
the image processing library OpenCV [57], which is used in this work.

.
.. ..

.
.

. .
.

Figure 2.8: Convex Hull

2.2.4 Thresholding

Thresholding is a method for converting grayscale images to binary images. The simplest
form, global thresholding, uses a single (global) threshold T and compares it with each
intensity value in the image [39]. Figure 2.9 shows a thresholding example [58]. First, a
histogram for the intensity distribution is created. Here, the histogram reveals a bimodal
distribution, i.e., two peaks are clearly visible. In such a clear bimodal distribution, deter-
mining a single threshold (indicated by a red line in figure 2.9) is straightforward and can
be determined automatically [39]:

1. Start with an initial random threshold T

2. Divide the image into two groups g1 and g2 using T

3. Calculate the average gray level values µ1 and µ2 for each group

4. Update the threshold value: T = 1
2 (µ1 + µ2)

5. Repeat previous steps until Ti − T(i+1) < ε with ε as a predefined parameter

15

2 Fundamentals

Figure 2.9: Thresholding Example

A different way for finding the optimal global threshold value is Otsu’s method [59]. Otsu
approaches the task as a binary classification problem. Each gray value is either classified
as black or white. The overall goal is to minimize the misclassification error. Thus, the
within-class variance σ2

w (see equation 2.17) is minimized. It is the sum of the weighted class
variances σ2

1 and σ2
2 . Equation 2.18 shows how the weights are calculated, with t as the

current threshold value, P(i) the probability of the intensity i, and I the total number of
intensity values.

σ2
w(t) = ω1(t)σ2

1 (t) + ω2(t)σ2
2 (t) (2.17)

ω1(t) =
t

∑
i=1

P(i)

ω2(t) =
I

∑
i=t+1

P(i)

(2.18)

For all possible values of t ({0, ..., 255} for 8-bit grayscale images), the algorithm computes
the within-class variance σ2

w and then chooses the t with the smallest within-class variance
[60].

Unfortunately, not every image has a bimodal intensity distribution. Uneven distributed
illumination across the image can lead to some very bright and some very dark areas
which cannot be separated well by a global threshold [39]. The key idea to threshold those
images is to use local thresholding, i.e., dividing the image into several subimages and
finding a separate threshold value T for each of the subimages [39].

2.2.5 Edge Detection

Edges are defined as regions with a significant change of intensity. They can be classified
into four categories [61] (see also figure 2.10):

Step: The change of intensity happens rapidly. For example, a white and black pixel
next to each other.

Ramp: In contrast to step edges, the change of intensity happens gradually. For example,
four pixels next to each other with respective intensities of {100, 125, 150, 175}.

Line: Two step edges next to each other. For example, a white pixel in between two
black pixels.

Roof: The combination of two ramp edges next to each other, e.g., a blurry line.

16

2.2 Image Processing

(a) Step Edge (b) Line Edge (c) Ramp Edge (d) Roof Edge

Figure 2.10: Edges

Most images contain a certain degree of noise. As a result, step and line edges are
rather rare. Their smoother variants, ramp and roof edges, are more common [61]. This
section introduces two edge detection methods, the Sobel operator [62] and the Canny
Edge Detection algorithm [63].

2.2.5.1 Sobel Operator

The Sobel operator uses two 3x3 convolution kernels (see figure 2.11) to compute the gra-
dients Gx and Gy in grayscale images: one for detecting horizontal and one for detecting
vertical edges, which is simply a rotated version of the previous kernel [62]. The kernels
compare the region around the potential edge by subtracting both sides from each other
[62]. If both sides are identical, the result will be 0. The more the intensity values differ, the
larger the absolute difference. The kernels are applied separately and the total magnitude
of the gradient is computed with equation 2.19 [62].

1 2 1

0 0 0

-1 -2 -1

-1 0 1

-2 0 2

-1 0 1

Figure 2.11: Sobel Kernel
1: Kernel for computing Gy; 2: Kernel for computing Gx

|G| =
√

G2
x + G2

y (2.19)

The edge’s angle can be computed with equation 2.20 [62].

α = arctan
(

Gy

Gx

)
(2.20)

2.2.5.2 Canny Edge Detection

Canny defines the criteria for an optimal edge detection algorithm in his work as follows
[63]:

Good Detection: Minimizing the false-positive and false-negative error rates, i.e.,
present edges should be detected and detected edges should be
present.

17

2 Fundamentals

Good Localization: The location of the detected edge should be as close as possible to
the center of the actual edge.

Single Response: The width of a true edge should be minimized.

The algorithm consists of five steps [64]:

1. Remove noise with a Gaussian filter

2. Compute the gradient with the Sobel operation

3. Find edge direction

4. Non-maximum supression

5. Hysteresis Thresholding

For smoothing the image with a Gaussian filter, a kernel needs to be calculated first.
Equation 2.21 shows how this can be done, where σ is the standard deviation of the
Gaussian distribution, x the distance of the horizontal axis from the kernel’s origin and y
the distance from the vertical axis from the kernel’s origin [44].

g(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (2.21)

The Sobel operation (see 2.2.5.1) can be used to perform step two and three. In most cases,
edges are several pixels wide. For this reason, step four thins all edges by analyzing the
gradients and setting all pixels except for the local maximums to 0 [64].

The last step performs thresholding to remove noisy edges. Two threshold values T1
and T2 are determined and each pixel p ≥ T1 is considered as a final edge [64]. If a pixel
lies between both threshold values (T2 ≤ p < T1) and is connected to a pixel which is
greater than T1, it is also considered as a final edge. The remaining pixels p < T2 are
removed [64].

2.2.6 Hough Transform

Before the Hough transform [65][39] can be performed, the edges in the image must be
detected first. The result of the edge detection step is an image with a black background
and white pixels on it — the edges. Each edge consists of several pixels which may be
aligned in a particular form, e.g., a line. The Hough transform scans the image for those
pixels and replaces them with actual lines [39].

Let’s assume there are n points in an image and a subset of them form a straight line.
The general equation for a line is shown in 2.22 with a as the slope and b as the intercept.
For a single point (xi, yi), there is an infinite number of lines that pass through this point,
all with different values for a and b.

y = ax + b (2.22)

Equation 2.22 can be written as shown in equation 2.23. A point in the x, y space is a
line in the a, b (parameter space) space and vice versa (see figure 2.12) [39]. Consider a
second point xj, yj which lies on the same line as xi, yi in the x, y space. This second point
can also be represented in the parameter space as a line and it will intersect with the line

18

2.2 Image Processing

0 1 2 3 4 5
0

2

4

6

8

10

x

y

(a) XY Space

0 1 2 3 4 5
0

2

4

6

8

10

a

b
(b) Parameter Space

Figure 2.12: XY and Parameter Space
Each point in the xy space is a line in the parameter space and each point in the

parameter space is a line in the xy space.

of xi, yi at a′, b′. In fact, all points on the line in the x, y space will intersect at the point
a′, b′ in the parameter space [39].

b = −xa + y (2.23)

The parameter space is now divided into cells, the accumulator cells, and all cells are
initialized with 0. Every point xi, yi from the x, y space is then transformed to a line in the
parameter space and the value in the corresponding accumulator cell for point (ai, bi) is
incremented by one. If a cell (i, j) has a high value, this means many lines pass through
this cell, i.e., the slope and intercept for the line in the x, y space are ai, bi.

There is still one problem: What happens if the line in the x, y space is a vertical line?
In this case, the slope a = ∞. This can be avoided by using the normal representation,
shown in equation 2.24 [39]. ρ is the distance of the line from the origin and bounded
between ±

√
2D where D is the diagonal of the image. θ is the angle between the x-axis

and ρ with a range from −90◦ to +90◦. The accumulator cells are determined in the same
way as before.

x cos θ + y sin θ = ρ (2.24)

19

2 Fundamentals

2.3 Summary

The first part 2.1 explained the fundamental concepts of neural networks and in particular
of CNNs. First, section 2.1.1 introduced feedforward networks which CNNs belong to.
Feedforward networks are one category of neural networks where information can only
flow in one direction, i.e., forward. Next, the perceptron was explained and how they
can be combined to build a MLP. The following section 2.1.2 covered one component
of a perceptron in detail — the activation function. It was highlighted that non-linear
activation functions are required to model complex problems. Section 2.1.3 explained
first how a loss function can be used to measure the neural network’s performance and
then how the performance can be optimized with gradient descent and backpropagation.
The convolution operation was explained in section 2.1.4. It is the key layer in a CNN
and extracts the features of an image. The following section 2.1.5 explained feature maps
which are the result of the convolution operations. The pooling operation was explained
in section 2.1.6 and is helpful for reducing the dimensions of the feature maps. The last
section 2.1.7 explained the problematic of overfitting and showed some techniques such
as regularization and dropout for reducing overfitting.

The second part 2.2 focused on image manipulation techniques. It first explained the
basic representation of an image in 2.2.1 and then the different color models such as black
& white, grayscale, RGB, CMYK and HSV. Furthermore, it was shown how histograms
can be used to analyze the intensity distribution. Section 2.2.2 explained the two mor-
phological operations dilation and erosion. They can be used to manipulate the object’s
boundary and are useful to remove noise. The next section 2.2.3 illustrated the concept
of the convex hull. After that, section 2.2.5 introduced two thresholding algorithms, i.e.,
two algorithms to convert grayscale images to binary images. Section 2.2.5 explained not
only the four edge types step, line, ramp and roof but also how they can be detected with
the Sobel operator or Canny’s algorithm. The last section 2.2.6 explained how lines can be
detected after an edge detection step.

20

3 Analysis

This chapter starts first with a general introduction to bar codes. Before the Cauzin Soft-
strip symbology is explained, a very similar bar code is presented — the PDF-417. An
algorithm for recognizing PDF-417 bar codes is explained as well as one algorithm for
decoding the PDF-417 symbology. The next sections analyze the Cauzin Softstrip in de-
tail. They include the Cauzin Softstrip’s symbology and a detailed analysis of the error
detection methods. The last section presents the Softstrip dataset and highlights the char-
acteristics of each subset.

3.1 Barcodes

Note: The information provided in this section is based on The Bar Code Book [66] unless stated
otherwise.

In general, bar codes encode human readable information into a pattern of different sym-
bols. The symbology describes how information is translated into the different symbols.
The actual data is referred to as code.

Bar codes can be divided into two broad categories: one-dimensional and two-dimensional
bar codes. One-dimensional bar codes, also called linear bar codes 1, use a parallel pattern
of spaces and bars to encode information. They are omnipresent and most known for
encoding product information in stores. Two examples are shown in figure 3.1. Those bar
codes use width-modulated symbols, i.e., different bar widths are used to encode informa-
tion, and the height only provides redundant information which might be useful if the
bar code is damaged. Bar codes with height-modulated symbols, i.e., bar codes which use
varying bar heights to encode information, exist as well. POSTNET is such a bar code
and was used by the United States Postal Service [67]. In order to store more information

1 23456 78900 5

(a) UPC A

1 234567 890005

(b) EAN 13

Figure 3.1: One-Dimensional Bar Codes

and use the area more efficiently, two-dimensional bar codes were created. They can be
divided into two categories: stacked and matrix symbologies. Figure 3.2 shows a few
example bar codes for each category. Stacked bar codes are composed of multiple rows
where each row looks like a one-dimensional linear bar code. Matrix bar codes use the
horizontal and vertical area to encode information and allow more sophisticated symbols.

1There exist also circular symbologies such as the ShotCode.

21

3 Analysis

(a) Aztec (b) QR

(c) Codablock-F (d) PDF-417

Figure 3.2: Two-Dimensional Bar Codes

The Cauzin Softstrip belongs to the category of two-dimensional stacked bar codes and
its symbology is explained in section 3.3. At first sight, the PDF-417 bar code symbology
looks similar to the Cauzin Softstrip. Therefore, section 3.2 explains its symbology first
and then presents one algorithm for recognizing and one for decoding PDF-417 bar codes.

3.2 PDF-417

Note: The information about the PDF-417 symbology is based on The Bar Code Book [66] and the
PDF-417 patent [68].

The PDF-417 is a two dimensional bar code which was developed by Ynjiun Wang [68].
The bar code is used in many areas such as on airline boarding passes [69] or on North
American driver’s licenses [70]. It belongs to the category of stacked bar codes and looks
similar to the Cauzin Softstrip (see figure 3.3). Therefore, this section examines how the
bar code is processed.

3.2.1 Symbology

Figure 3.3 shows a PDF-417 bar code. The start and end of the bar code are indicated by
a start pattern on the left side and a stop pattern on the right side. PDF-417 consists of

22

3.2 PDF-417

multiple data rows. Each row has a left and right row indicator which provide some meta
information such as the current row number or the total number of rows. The actual data
is encoded in the data section between the left and right row indicator. A value, which
can be a character or number, is encoded as a codeword, a pattern of four black bars and
four white spaces. Each codeword consists of 17 units. A unit is the smallest width for a
single bar or space. The combination of 4 codewords and 17 units is the reason for the
name PDF-417. There are 929 codewords in total and three different clusters. Each cluster
encodes all 929 codewords uniquely, i.e., the first cluster encodes the value 0 in a different
way than the second or third cluster. A row can only use codewords from one cluster. The
used cluster changes with each row, so adjacent rows use always different codewords and
can be distinguished from each other.

The bar code uses Reed-Solomon error correction with different correction levels. A bar
code with the highest correction level can even be decoded if 50% of it is missing [71].

Figure 3.3: PDF-417
The beginning of the bar code is indicated by (1) and the ending by (5). The left (2) and

right (4) row indicator contain meta information about the row. The data section (3)
consists of multiple codewords (6).

3.2.2 Recognition

The task of localizing the bar code in an image is called bar code recognition. A recognition
process for the PDF-417 bar code is presented in [72]. The algorithm consists of four steps:

1. Grayscale conversion

2. Region of Interest (ROI) detection

3. Rectify the bar code

4. Decode the data

In the first step, the color image is converted to a grayscale image. This does not only
reduce the storage space but is also required for operations like edge detection [72]. The
idea behind the ROI detection is to detect the boundary of the bar code. Therefore, the
area inside the bar code is first set to one color by applying erosion. Afterwards, a Hough
transform is applied which is able to detect shapes (see figure 3.4). From there, the corner
points can easily be detected and a perspective transformation can be applied to correct
the perspective.

23

3 Analysis

(a) (b) (c)

(d) (e) (f)

Figure 3.4: PDF-417 Recognition
The original bar code is shown in the first image. The second image shows the bar code
after the erosion step. The Hough transformation is applied in the third image. Image
four shows the corner points that can be calculated from the third image. The corner
points can be used to correct the perspective as shown in image five. The last image

shows the corrected bar code after applying dilation.

3.2.3 Decoding

After the bar code has been located and rectified, the decoding algorithm starts. Many
decoding strategies exist, one algorithm is described in [73]. The key idea is to place a grid
over the bar code, where one cell has the size of the smallest bar. Then, the average pixel
value in each cell is computed. Finally, a binarization step is applied and the codewords
can be decoded.

In order to create a grid, the number of rows and columns must be known. As in subsec-
tion 3.2.1 explained, consecutive rows use codewords from different clusters. This means,
the codewords in one column differ in at least one module [73]. Therefore, the number of
rows can be determined by calculating these transitions. The property that each codeword
starts with a black and ends with a white module is used for determining the number
of columns. Consequently, there is always a white to black transition between two code-
words. Therefore, the number of columns can be determined by locating and counting the
white to black transitions between the codewords.

3.3 The Softstrip Symbology

This section explains the structure of the Cauzin Softstrip and how digital data is en-
coded. The information presented in this section is based on the Cauzin Systems patents
[74][75][76].

3.3.1 Basics

Figure 1.1 on page 4 shows four typical Softstrips in a computer magazine. A strip is
usually up to 255 mm long and up to 16 mm wide. Each Softstrip has two positioning
marks for the Softstrip Reader, a circle in the upper left and a rectangle in the lower left.
Each Softstrip is divided into three sections (see figure 3.5). The first part is the horizontal
synchronization section, the second part is the vertical synchronization section and the
last part is the information part. The horizontal and vertical synchronization sections are
referred to as the header and contain encoded meta information about the Softstrip itself.

24

3.3 The Softstrip Symbology

Figure 3.5: Softstrip Structure
The Softstrip is divided into three parts: the horizontal synchronization section (1),

vertical synchronization section (2) and the information part (3). A black bar marks the
start of the Softstrip (a). The checkerboard (b) and the rack (c) are used to identify the

start and end of a row.

Each part is explained in detail in the following sections.

The Cauzin Softstrip uses two bits, called dibit, for encoding a single information bit.
All possible dibit values are shown in figure 3.6. A zero data bit is encoded by a black
square followed by a white square, whereas a one data bit is encoded by a white square
followed by a black square. A dibit with two white or two black squares is invalid.

(a) Zero (b) One (c) Invalid (d) Invalid

Figure 3.6: Possible Dibit Values

The start of the Softstrip is indicated by a one dibit wide black bar on the left side. Both
the checkerboard and rack (see figure 3.5) change in each line and are used to determine
the start and end of a row. If the checkerboard dibit is zero (black-white), then the rack
consists of two black squares and one white square. The next row must have a checker-
board with a one dibit (white-black) and a rack with three black squares. A typical row in
the vertical synchronization and information section is shown in figure 3.7.
The row begins with the start bar which consists of two black squares and is followed

by one white square. The next two squares are the checkerboard pattern, which is either
black-white or white-black. After that comes the first parity dibit for detecting errors in
the following data dibits. The number of data dibits is defined in the horizontal synchro-
nization section. A second parity dibit is added after the data dibits. The left parity dibit
checks the odd data dibit positions, whereas the right parity checks the even data dibit

25

3 Analysis

Figure 3.7: Row Example
The row consists of a one dibit wide start bar (1), one half dibit wide white space (2),

checkerboard (3), left parity dibit (4), multiple data dibits (5), right parity dibit (6), one
dibit wide white space (7) and the rack (8).

positions (see equation 3.1). The row ends with one or two white squares after the second
parity dibit and either two or three black squares for the rack.

left parity = ∑
0≤i≤n,i odd

dibiti right parity = ∑
0≤i≤n,i even

dibiti (3.1)

3.3.2 Horizontal Synchronization

The first part of each Softstrip is the horizontal synchronization section. It includes the
number of nibbles per row and is used to align the optical reader for scanning the strip.
The reader determines the contrast between paper and ink color by measuring the re-
flectance of the broad bars and compares it with the reflectance of the non-printed area
above the Softstrip. However, the contrast value is not required for this work.

The horizontal synchronization section has an even number of symmetrically aligned
bars. For instance, a horizontal synchronization section with 10 bars has 5 bars on the left
and 5 bars on the right side. A Softstrip must have at least four bars. The two broader bars
are three dibits and the other bars are one dibit wide. The space between the bars is one
dibit wide as well, except for the center, which separates the left from the right side.

The number of data bits per row is encoded as nibbles. A nibble is a half byte and has
consequently 4 bits. The data bits are all bits between the left and the right parity dibit. In
order to obtain the number of nibbles, one has to count the white to black transitions in the
horizontal synchronization section. It should be noted that the white to black transition
at the start bar counts as well. The number of nibbles per line can then be calculated with
equation 3.2.

Nibbles =
transitions + 4

2
(3.2)

3.3.3 Vertical Synchronization

The horizontal synchronization section is followed by the vertical synchronization section.
The height of the dibits is encoded as a 8-bit number and is repeated multiple times per
row. The number itself is split into nibbles and the height is measured in 1/16 scan steps.
The upper nibble is the number of full scans, while the lower nibble is the number of 1

16
scans. For instance, the dibit height 0x65 requires 6 and 5 sixteenths scans with a scan step
distance of 0.0635 mm.

26

3.3 The Softstrip Symbology

3.3.4 Data Information

The actual data is encoded in this section. It is separated from the vertical synchronization
section by three 0 bytes. A file header with meta information about the file is prepended.
A detailed overview about the meta information can be found in table 3.1.

27

3 Analysis

Field Name Length in Bytes Description

1 Length 2 First byte is LSB and second
byte is MSB. Length is the to-
tal number of bytes of all fol-
lowing fields.

2 Checksum 1 Two’s complement of the
one byte binary addition
with carry bit of all following
bytes.

3 Strip Id 6 Multi strips should have the
same id.

4 Sequence Number 1 Is a 7-bit binary number.

5 Strip Type 1 Types are listed in table A.1

6 Software Expansion 2 Flag byte for future features.

7 Operating System Type 1 Operating systems are listed
in table A.2

8 Number of Files 1

9 Cauzin Type 1 Cauzin types are listed in ta-
ble A.3

10 Operating System Filetype 1 Operating system filetypes
are listed in table A.4

11 File Length 3 First byte is LSB and third
byte is MSB.

12 Filename Variable length

13 Terminator 1 Indicates the end of the file-
name. Either 0x00 for termi-
nating or 0xFF for signaling
to run the program after read-
ing.

14 Block Expand Variable length For future features. Default is
0x00.

15 Data Variable length

16 CRC 2 Not implemented

Table 3.1: Data fields [77]

28

3.4 Error Detection

3.4 Error Detection

The Cauzin Softstrip uses a combination of parity bits and a checksum to detect errors
during the decoding process. This section analyzes both error detection methods and
highlights their flaws.

3.4.1 Parity Check

Each data row in the Cauzin Softstrip includes two parity (di)bits to detect errors in the
data (di)bits. First of all, the parity bits only check the data in between both parity bits.
Therefore, they are not able to detect if one of the parity bits themselves is corrupted. As
a consequence, the data in a row could be classified as invalid although it is correct. If the
parity bits are correct and they detect an error, it is not possible to locate the error. The only
information they provide is whether the corrupted bit is at an even or uneven position. It
is also not possible to detect the actual number of errors. In fact, it is even possible that
errors cancel each other out so that they will not be detected at all. Let’s assume a Softstrip
row was decoded into the following bits:

Row = [1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1] (3.3)

The left parity bit (Row[0]) is 1 and the right parity bit (Row[11]) is 1. The parity check
confirms that the data bits are correct:

Le f t = (0 + 0 + 0 + 0 + 1)mod 2 = 1
Right = (1 + 0 + 0 + 1 + 1)mod 2 = 1

(3.4)

Now, let’s assume the same row is damaged so that the decoded bits are:

Row = [1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1] (3.5)

Although two bits are altered the parity check confirms again that this row is correct:

Le f t = (0 + 0 + 0 + 0 + 1)mod 2 = 1
Right = (1 + 1 + 1 + 1 + 1)mod 2 = 1

(3.6)

A single parity bit is only able to detect an error in a set if the number of errors in this set
is uneven.

3.4.2 Checksum

Every Softstrip contains a one-byte checksum which is calculated in two steps:

1. One-byte add with carry bit of all bytes after the checksum field

2. Apply the two’s complement

As the previous section highlighted, it is possible that wrong data passes the parity check.
An error which passes the parity check can be detected by the checksum check. However,
this is not always true. Assume there is an undetected error in a row and this row contains
the checksum field. Consequently, the undetected error corrupts the checksum itself and
it does not match the checksum of the correct data anymore, i.e., correctly decoded data
will not be accepted. If, however, additional errors occur during the decoding process, the
checksum field might match the checksum of the decoded data again and wrong data will
be accepted. A user would notice this later when they try to use the exported program

29

3 Analysis

and it does not work as intended or even crashes.

Another problem is that the checksum does not consider the position of the data bytes. For
example, let’s assume the decoded bytes are [0, 4, 5, 8]. The checksum for those bytes is 239.
Let’s consider the row was decoded again. However, this time the parity check missed
some errors, so the decoded bytes are [5, 4, 0, 8] which results also in a checksum of 239.
As one can see, wrong data did not only pass the parity check but also the checksum check.

This section showed that the parity bits and the checksum are not able to detect all er-
rors. However, they are the only error detection methods used by the Cauzin Softstrip.
Consequently, there is no reliable method to verify that the decoded data is correct.

3.5 Dataset

The Softstrips used in this work are from different sources, including digital generated
Softstrips, scans from the book Animated Algorithms [19], scans from various StripWares, a
collection of scanned Softstrips from computer magazines [78], and a collection of scanned
Softstrips from Cauzin Softstrip Application Notes and Marketing Material [79]. The
following subsections highlight the characteristics of each dataset.

3.5.1 Digital Generated Softstrips

The Softstrip creation tool by Chris Osborn [80] was used to generate 870 Softstrips in total.
An icon collection served as input data for those Softstrips. Each icon was encoded into a
single Softstrip with a typical image resolution of 390× 2500 pixels. The Softstrips in this
dataset are of the highest quality, i.e., each dibit has the exact same size, only black and
white pixels exist, and there is neither noise, distortions nor rotations. A few typical rows
are shown in figure 3.8. The purpose of this large dataset is to develop a base decoder
which is able to decode high quality Softstrips. Once the decoder is able to decode this
dataset, it can be optimized for the other datasets.

Figure 3.8: Generated Rows

3.5.2 Scanning Distortions

The Cauzin Softstrip has the shape of a rectangle, so it is naturally to assume that this
is also true for a scanned Softstrip. However, if a Softstrip was not scanned carefully
enough, the Softstrip’s shape is slightly curved. Figure 3.9 illustrates this. This makes it
more difficult to scan fixed areas on the image for certain properties. Those distortions
occur on all following datasets.

3.5.3 StripWares

Computer programs in form of Cauzin Softstrips were sold in computer stores as booklets
called StripWares. Usually, several programs of the same category, for instance, financing
were sold in one StripWare. A few StripWares in very good condition, some were still
sealed, were available for this thesis. Those are:

30

3.5 Dataset

Figure 3.9: Scanning Distortions

• Classic Games for the Apple II

• The Financial Advisor for the MacIntosh

• MacArt for Business for the MacIntosh

• Portfolio Evaluation for the IBM PC

• Star Gazing for the IBM PC

• The Basic Apple for the Apple II

• Second Giant Book of Computer Games for the IBM PC

• Cauzin Softstrip Sampler

103 Softstrips in total were scanned with 1200 Dots per inch (DPI). The image resolutions
ranges from about 750× 6000 pixels up to 800× 9600 pixels. The collection includes both
low and high density Softstrips (see figure 3.10). Furthermore, it includes programs con-
sisting of a single and programs consisting of multiple Softstrips. Although the StripWare
collection is in a very good condition there are several visual artifacts on the Softstrips as
shown in figure 3.11.

Figure 3.10: Density Example
The upper figure shows two rows with a low data density. The lower figure shows five

rows with a high data density.

(a) (b) (c) (d) (e)

Figure 3.11: StripWare Artifacts
(a) and (b) show areas with smeared printer ink. (c) and (d) show strips with a damaged

rack. (e) shows a strip with a lot of white noise on black areas.

31

3 Analysis

3.5.4 Softstrips Animated Algorithms

The book Animated Algorithms [19] is one of the few books which uses the Cauzin Soft-
strip. It includes 40 Softstrips to run the presented algorithms. All programs consist of
multiple Softstrips and are printed in a medium density compared to the Softstrps from
the StripWares. They were scanned with 300 DPI and have an image resolution of about
360× 4200 pixels. The Softstrips have also some visual artifacts as shown in figure 3.12.

(a) (b) (c) (d) (e)

Figure 3.12: Animated Algorithms Artifacts
(a) shows an area with damaged dibits. (b) and (d) show an area with missing dibit parts.

(c) shows a start bar with a lot of white noise. (e) shows a damaged rack.

3.5.5 Cauzin Softstrip Application Notes and Marketing Material Collection

This collection was found on the internet archive [79] and consists of 58 Softstrips for
converting programs from one operating system to another. There are no information
about the DPI for these scans. The Softstrips are printed in a low and medium density.
Most programs contain only of a single Softstrip. The images from the PDF were extracted
with a high resolution of about 1500× 15000 pixels. In contrast to the other datasets, many
Softstrips in this collection contain some blurred areas as shown in figure 3.13.

(a) (b) (c)

Figure 3.13: Cauzin Softstrip Application Notes and Marketing Material Artifacts
(a) shows a blurred start bar. (b) shows a blurred rack. (c) shows blurred dibits.

3.5.6 Magazine Collection

This collection consists of scans from various computer magazines and contains 159 Soft-
strips in total (without duplicates). Similar to the previous collection, this collection does
not include information about the scanned DPI either. The Softstrips are printed in various
densities. The images from the PDF were extracted with the same resolution as the ones
from the previous collection. This collection contains by far the worst quality Softstrips
with some Softstrips where even humans would have trouble to decode them. A few
examples are shown in figure 3.14.
The following abbreviations will be used in the next chapters to refer to the respective
dataset:

DS1: Generated Softstrips

32

3.6 Summary

(a) (b) (c) (d)

Figure 3.14: Magazine Artifacts
(a) shows an area with missing dibit parts. (b) shows an area without a checkerboard. (c)

shows a damaged rack. (d) shows an area with faded black areas.

DS2: Softstrips from the book Animated Algorithms

DS3: Cauzin Softstrip Application Notes and Marketing Material Collection

DS4: Magazine Collection

DS5: StripWare Collection

3.6 Summary

This chapter started with a general bar code introduction. One two-dimensional bar code,
the PDF-417, was analyzed in more detail in section 3.2. An algorithm for recognizing
PDF-417 bar codes was presented and one algorithm for decoding its symbology.

Section 3.3 explained the Softstrip symbology. The Softstrip is divided into three sec-
tions. The first section, the horizontal synchronization section, encodes the number of
bytes stored in each row. The second section, the vertical synchronization section, encodes
the row height in mm. The last section, the information section, encodes the actual data in
form of dibits.

Section 3.4 analyzed the Softstrip’s error detection methods. The parity bits and the check-
sum. It was shown that they are not able to detect all kind of errors and in some cases
even verify wrong data as correct.

The last section, section 3.5, analyzed the different Softstrip datasets. In total, five dif-
ferent datasets are available for this work. The first one consists of digital generated
Softstrips. The second dataset contains scanned Softstrips from [19]. Dataset three and
four are scanned Softstrip collection found on the internet. The last dataset contains scans
from various StripWares.

33

4 Related Work

This chapter presents relevant and related work for this thesis, highlights their limitations
and shows why this work is important. Section 4.1 presents a digital reader for the OSCAR
bar code and section 4.2 the Softstrip generation program with a simple Softstrip decoder.

4.1 OSCAR

OSCAR is a bar code developed by the Databar Corporation and was released two years
before the Cauzin Softstrip in 1983. An example bar code is shown in figure 4.1. A typi-
cal program was four pages long and took about three minutes to scan [81]. Ads for the
OSCAR bar code highlighted how easy it allegedly was to use the system and claimed
even children could scan programs in a couple of minutes [82]. However, the optical
scanner had to be carefully adjusted and sometimes required multiple tries until a row
was successfully scanned [12]. The optical reader was available for $79.95 and the bar
codes were published in the Databar magazine. Additionally, the same bar codes could be
purchased in stores. The Databar reader was compatible with Atari (400, 600, 800, 1200XL,
1400XL and 1450XL), Commodore (PET, VIC-20 and 64), Timex Sinclair (1000, 1500 and
2000), TRS Color Computer and Texas Instruments TI 99/4A [83]. One could join the
Databar Club for 12 or 24 months for an additional $120 or $240 and would receive a
monthly issue of the Databar magazine including eight programs. Unfortunately, only
one issue was published [12]. In 2016, an OSCAR bar code was published in [84] as a
puzzle. In order to decode it, Philippe Teuwen created a digital OSCAR reader in Python
and published it on GitHub [85].

The number of published OSCAR bar codes is limited since only one issue of the Databar
magazine was published. On the contrary, Softstrips were published in plenty of maga-
zines as well as purchasable programs. This means the digital Softstrip reader has to deal
with different visual artifacts coming from different resources and needs a more general
decoding strategy than the OSCAR decoder.

Figure 4.1: Databar Practice Sheet
Databar Practice Sheet [86]

35

4 Related Work

4.2 The CauzCoin Challenge

Chris Osborn is the owner of a working Cauzin Softstrip Reader and published an article
about the Cauzin Softstrip on his blog Insentricity [87]. He decided to create his own
Softstrips and found a disk image with the Stripper Software online [88]. However, the
software comes with a few limitations. First, it has no option to save a Softstrip as an
image. They can only be printed on an Epson FX-80 or an Apple ImageWriter. Second,
the software is only able to print low density Softstrips. Last, the software works only
on Apple DOS 3.3. For this reasons, he created his own software to generate Softstrips
[80]. Although the current version does not support splitting files into multiple Softstrips,
the generated Softstrips are still useful for this work, since the only difference between
decoding the first Softstrip in a set and the other Softstrips is additional meta information
on the first strip.

After Chris Osborn created his Softstrip generation program, he used it to create a new
Retro Challenge, which he published on his Blog [89] and on the Retro Battlestations sub-
reddit1. The challenge was to decode a Softstrip, which contained the private key to a
Bitcoin wallet. The first person, who was able to decode the Softstrip could claim the Bit-
coins, which were then worth about $15. The winner was Will Sowerbutts, who published
his decoding process on his website [90]. His approach is analyzed in the next section.

4.2.1 Window Decoding

Sowerbutts’ decoder [90] uses a sliding window approach for decoding the Cauzin Soft-
strip. The window has the height of a single dibit and half of its width. Sowerbutts does
determine the window size manually. However, the number of bits in each row is encoded
in the horizontal synchronization section. Therefore, the window width can simply be
determined with equation 4.1.

width =
bar code width
bits per row ∗ 2

(4.1)

As in section 3.3.3 mentioned, the row height is encoded in mm in the vertical synchro-
nization section. However, the image resolution of a scanned Softstrip can vary. The same
Softstrip could be scanned once in a low resolution and once in a high resolution. In both
cases the encoded row height in mm is the same but the height in pixels is different. This
means, that one mm cannot be mapped to a default number of pixels. The Softstrip does
not include the total number of rows so an alternative solution is required to obtain the
total number of rows. The rack or the checkerboard could be used to count the number
of rows since they change with each row. Once the total number of rows is known, the
Sofstrip can be divided by this number to obtain the height of a single row.

Once the window size is known, it is slid across the bar code and the center pixel is
located at every position to determine if the cell is black or white. Figure 4.2 illustrates
this approach. This approach works great if all dibits have exactly the same size. Figure
4.3 shows the result on a scanned Softstrip with varying dibit width and height. As one
can see, the green dots do not match the cell center. In some cases the located center has a
different color than the cell.

1https://www.reddit.com/r/retrobattlestations/comments/50hoyw/another_retro_challenge_
has_arrived_cauzcoin/d75b65t/

36

4.2 The CauzCoin Challenge

Figure 4.2: Windowing Example

Although this approach works great on the digital generated Softstrips it is error prone on
scanned Softstrips. For this reason, a different decoding strategy is presented in chapter 5.

Figure 4.3: Windowing on the Quicksort Softstrip

4.2.1.1 Limitations

First, Sowerbutts’ decoder focuses only on decoding this particular Softstrip. For this
reason, it can make some assumptions which do not hold for other Softstrips. First of
all, it assumes that all squares and rows have the exact same size, which is true for the
generated Softstrip but does not hold for the scanned bar code images. Secondly, since it
only needs to decode a single Softstrip, the implementation does not support decoding
data which consists of multiple Softstrips. Lastly, it requires the user to count both the
number of squares per row and number of rows in total. By contrast, the digital reader of
this work does work with a variety of Softstrips, including both generated Softstrips and
scanned Softstrips from magazines or books. It does support decoding data divided into
multiple Softstrips and does not require the user to count the number of rows or number
of squares per row.

37

5 System Design

Bar codes and in particular the Cauzin Softstrip were analyzed in chapter 3. Its symbology
was explained and potential challenges were highlighted. This chapter presents a solution
to overcome those challenges and shows how to decode the Cauzin Softstrip. Each section
in this chapter focuses on a single component of the digital decoder and explains the
general idea behind the solution. More details of the implementation are presented in
chapter 6.

5.1 Softstrip Recognition

Although Softstrip recognition is not part of this thesis, the general steps to perform this
task are presented in this section so it can be implemented in future work. The steps are
based on the PDF-417 recognition framework [72], explained in section 3.2.2:

1. Preprocessing

2. Bar code detection

3. Bar code extraction

4. Perspective transformation

The first step is required for the following steps. It includes grayscale conversion and
thresholding to obtain a binary image. The bar code boundary can then be detected with
contour detection which is based on edge detection. Once the bar code boundary is known,
the corner points can be located to extract the bar code. This could be done with the Hough
transformation. In the last step, a four point perspective transformation could be applied
with the corner points to correct the perspective.

5.2 User Interface

As already mentioned in section 5.1, an automatic bar code recognition for the Softstrip
is beyond the scope of this work. A Graphical User Interface (GUI) is provided as an
alternative, which includes some basic functions to allow the user to extract the Softstrip
from a scanned image. These functions are:

• Image Rotation

• Image Scaling

• Softstrip Selection

Data can be divided into multiple Softstrips. Therefore, a user has the option to select
multiple Softstrips from an image and to order them. If a user is not satisfied with a
selected Softstrip, they can delete the selected Softstrip and repeat the step again.

39

5 System Design

5.3 Horizontal Synchronization Section

The horizontal synchronization section is the first part of a Softstrip and contains the num-
ber of bytes per row. In order to decode the number of bytes per row, the white to black
transitions need to be counted. This is an easy task for a human but more complicated for
a computer. An horizontal synchronization section with a lot of noise could have more
white to black transitions than actually exist (see figure 5.1). If the digital decoder does

Figure 5.1: Damaged Horizontal Synchronization Section

not recognize the noise, the whole decoding process already fails with the first step. For
this purpose, the very first step is noise reduction. This can be done with:

• Gaussian Filter

• Erosion and Dilation

There is no guarantee that the noise reduction step removes all of the noise. Therefore,
the decoder needs to locate a part of the horizontal synchronization section which very
likely does not contain any noise. The challenge is to find this part. The idea is to consider
each pixel line and compare it with its surrounding lines. If they are all similar, and the
number of surrounding lines is large enough, one can be confident that this part does not
contain noise. The red rectangle in figure 5.1 highlights such a part. A common similarity
measurement is the Euclidean distance (see equation 5.1).

d(p, q) =

√√√√ k

∑
i=1

(pi − qi)2 (5.1)

It measures the distance between the k features of the data points p and q. Here, the
features of two pixel lines are used to measure the distance. These features are:

• Average bar width

• Maximum bar width

• Minimum bar width

• Number of bars

A bar refers to both black and white bars. A pixel line can now be compared to its neigh-
bours and if it is similar to, for instance, 10 neighbours, it is a strong indicator that there
is no noise in this area. The actual number of neighbours which is considered needs to be
determined experimentally. Here, 5 proved to be a good choice and the Euclidean distance
must be less than 0.1.

After an area with no noise is extracted, the decoder needs to count the white to black
transitions, which is straightforward. There is one minor pitfall left: the decoder does not
know the whole original image but only the extracted Softstrip from this image. However,
a printed Softstrip is surrounded by a quiet zone, i.e., a white area which simplifies the

40

5.4 Row Extraction

bar code location. This means, there is a white to black transition the decoder cannot see.
Figure 5.2 illustrates this transition. The outer red rectangle includes the quiet zone and
the inner red rectangle highlights what the digital decoder sees. Once the horizontal syn-

Figure 5.2: Quiet Zone Transition

chronization section is processed, it is removed from the bar code. The structure changes
drastically from the horizontal to the vertical synchronization section. This change can
also be seen in the previously determined properties. Therefore, the Euclidean distance is
used again to locate the boundary between both sections. The number of bars is used to
spot the transition from the horizontal to the vertical synchronization section. If the bar
count differs at least by 10 and the Euclidean distance of the next 3 lines is less than 0.1,
the vertical synchronization starts.

5.4 Row Extraction

As already mentioned in section 4.2.1 on page 36, the encoded row height in the vertical
section is not useful for the digital decoder. Here, two approaches for extracting the rows
are presented: one with the help of a CNN and one without.

5.4.1 Algorithmic Approach

This approach determines the checkerboard and rack pattern for each pixel line and groups
subsequent lines with the same pattern together. There are five categories a line can fall
into:

• No checkerboard found (invalid)

• "White-Black" checkerboard dibit and the last square of the rack is black (valid)

• "Black-White" checkerboard dibit and the last square of the rack is white (valid)

• "White-Black" checkerboard dibit and the last square of the rack is white (invalid)

• "Black-White" checkerboard dibit and the last square of the rack is black (invalid)

As soon as a pixel line changes from one valid pattern to a different valid pattern, a new
row starts. It is possible that, due to noise, patterns changes more often than they are sup-
posed to do. If so, a minimum amount of consecutive lines with the same pattern must
occur to be considered as a row.

Section 3.5 highlighted that not every Softstrip is a straight bar but rather a slightly curved
bar. This is also illustrated by figure 5.3. This shifting means the rack and checkerboard
cannot be simply located by scanning a fixed area. For detecting the checkerboard start,the
position of the first black pixel after the start bar is located. Given this pixel is not noise, it
can either be the start of the first square in a black-white checkerboard or the start of the
second square in a white-black checkerboard. A similar procedure is done for the rack.

41

5 System Design

The position of the last black pixel in a line is located, which, given it is not noise, can
either be the end of the second or the end of the third rack square. These information are
collected for all pixel lines. The Softstrip is then divided into multiple sections with the
same size and the outlier positions in each section, i.e., positions which occur only once or
twice, are removed. Then, the minimum and maximum position for the first black pixel
position after the start bar and the last black pixel are determined for each section. The
area between the minimum and maximum position for the first black pixel can be used to
locate the checkerboard and the area between the minimum and maximum position for
the last black pixel can be used to locate the last square of the rack.

(a) Left Shifted Rack (b) Right Shifted Rack

Figure 5.3: Rack
Both rack patterns are from the same Softstrip. Due to some distortions, the distance

between the rack and the image boundary can vary.

5.4.2 CNN Approach

The row extraction task can also be interpreted as a classification task. Let’s assume a few
pixel lines are selected, e.g., 10 lines, which contain more or less two rows. If the task is to
split those 10 pixel lines into two rows then there exist 10 different splitting points. Those
splitting points can be interpreted as different classes so there are 10 possible classes. A
CNN can be trained to perform this task. The checkerboard, rack, or both can be used to
train the CNN.

5.5 Row Decoding

Once the rows are extracted, the dibits need to be extracted and decoded. Again, two
approaches are presented: one with a CNN and one without.

5.5.1 Algorithmic Approach

A row can be divided by the number of dibits per row to obtain all dibits. However, as
figure 5.5 highlights, extracting a dibit with this method is not precise. Such an extracted
dibit usually contains some information from its neighbours which makes classifying the
dibit more difficult. An alternative approach is to detect the different color areas. Figure
5.4 illustrates this idea. Let’s refer to a single square of a dibit as unit, i.e., a dibit consists
of two units. Once those areas are detected, they need to be classified into two categories:
areas which are one unit wide and areas which are two units wide. If the right parity dibit
is 0 (black-white), then a three unit wide color area is also present (see figure 3.7 on page
26). The missing units can be calculated with equation 5.2:

Missing Units = (14 + nibbles per row ∗ 4 ∗ 2)−Number of Units (5.2)

42

5.6 Data Export

The 14 units in equation 5.2 are the ones beyond the data area:

• 2 units for the left start bar

• 1 unit for the space after the start bar

• 2 units for the checkerboard

• 2 units for the left parity dibit

• 2 units for the right parity dibit

• 2 units for the space after the right parity dibit

• 3 units for the rack

The color area sizes can then be sorted and the n widest units (calculated with equation
5.2 are two units wide. A parameter ε can be defined to decide whether the widest color
area is three units wide or not.

In the last step, the dibits are created by combining two units. Since the unit colors are
known, the classification of the dibit is straightforward.

Figure 5.4: Color Area Detection

5.5.2 CNN Approach

First, the row is divided by the number of dibits contained in a row. This method will
result in dibits which contain most likely parts of adjacent dibits as shown in figure 5.5.
Decoding a single dibit is a binary classification task; a dibit can either be a 0 or a 1.
Therefore, a CNN can be trained to classify those dibits.

5.6 Data Export

Once the rows are extracted and all dibits are classified, the encoded data can be processed.
First, the data section needs to be separated from the vertical synchronization section. As
section 3.3.4 on page 27 highlights, they are separated by three 0 bytes. Then, the file
header can be processed by using the information from table 3.1 on page 28. In the last
step, a binary file is created with the remaining bytes.

5.7 Software Architecture

A pipe and filter architecture is chosen for the implementation. This architecture pattern
is most known from the command line where the result of one command can be fed as
input into the next command [91].

The overall goal of a user using the digital reader is to extract the encoded data. If the dig-
ital reader fails at a single step, the whole decoding process is unsuccessful. For example,
the second step extracts the number of bytes in each row. Assume there are 3 bytes in a

43

5 System Design

(a) 1 Dibit (white-black) (b) 1 Dibit (white-black) (c) 1 Dibit (white-black)

(d) 1 Dibit (white-black) (e) 0 Dibit (black-white) (f) 0 Dibit (black-white)

(g) 1 Dibit (black-white)

Figure 5.5: Dibits

row but due to noise on the bar code image the digital reader thinks there are 4 bytes in
each row. Consequently, step five (Decode Rows) is going to fail because the digital reader
tries to extract 32 dibits although only 24 dibits exist. As a result, the user is not able to
access the encoded data. Their only option at this point is to decode the whole Softstrip
by themself. A more user friendly alternative is to tell them which step fails and offer
them the choice to perform this step by hand. In the previous example they only need to
count the white to black transitions in the horizontal synchronization section and insert
it into equation 3.2 on page 26. This only takes a few seconds and is therefore better than
decoding the whole Softstrip by hand. However, it requires that the user is familiar with
the Softstrip symbology and also willing to perform some steps.

5.8 Summary

This chapter used the knowledge from chapter 3 to build a digital Cauzin Softstrip de-
coder.

Section 5.1 presented a general approach to recognize Cauzin Softstrips and extract them
from an image. This approach will not be implemented in this work but might be useful
for future work.

Section 5.2 explained the functionality of the GUI which will be used as an alternative to
the automatic bar code recognition. It provides basic image manipulation operations such
as rotation, rescaling and Softstrip selection.

Section 5.3 explained how the number of bytes (or nibbles) can be extracted from the
horizontal synchronization section. First, a noise reduction step is applied, then a segment
is located where each pixel line in this segment is similar to all the other pixel lines in
this segment. The Euclidean distance is used to measure the similarity between two lines
based on features such as average bar length, minimum bar length, maximum bar length
and number of bars.

Section 5.4 presented two approaches to extract the rows from the Cauzin Softstrip. The

44

5.8 Summary

Image Preprocessing

Extract Bytes per Row

Remove Header

Extract Rows

Decode Rows

Data Validation

Data Export

Figure 5.6: Pipe and Filter Architecture

first one is an algorithmic approach and uses the checkerboard and rack to decide whether
a pixel line belongs to the current row or is the start of a new row. The second approach
uses a CNN to extract rows. A segment with a fixed size is fed into the CNN and it will
output the splitting point.

Section 5.5 covered the row decoding. The first approach is an algorithmic approach
and analyzes the color areas in a row for a better dibit extraction. The challenge is to
decide whether a color area is one, two or three units wide. The second approach uses a
CNN. The row is first divided by the number of dibits to extract the dibits. Each dibit is
then fed into the CNN to classify it.

Section 5.6 highlighted that the vertical synchronization section is separated by three
0 bytes from the data section. Table 3.1 shows how the data fields can be parsed.

Section 5.7 presented the chosen software architecture. It is a pipe and filter architecture.
The reason behind this choice is that, if a step in this architecture fails, it can be performed
by the user and fed again into the pipeline which might avoid a decoding failure.

45

6 Implementation

Chapter 5 presented the general system design to decode the Cauzin Softstrip. This chap-
ter provides more implementation details. First, the used technologies are presented in
section 6.1. The following sections cover the different components which were introduced
in chapter 5. Section 6.2 presents more details about the implementation of the GUI. The
next section, section 6.3, explains the implemented algorithm for the row extraction and
the used CNN architecture including the used training data. The last section, section 6.4,
provides more details about the row decoding algorithm and the CNN used to classify
the dibits.

6.1 Technologies

This section introduces the used technologies to develop the digital Softstrip decoder
and explains why those technologies were chosen. The following questions need to be
answered:

• What programming language should be used?

• What image processing library should be used?

• What machine learning/deep learning library should be used?

• What GUI library should be used?

The overall goal is to demonstrate a working prototype, not a sophisticated, production-
ready software product. Therefore, the following requirements should be kept in mind:

• Runtime is not a priority since the corpus of scanned Softstrips is relatively small.

• The technology should allow fast programming.

• The technology should be well documented.

In order to process the Softstrips, a number of image manipulation techniques have to
be applied. Therefore, an image processing library is preferred which simplifies this step.
A very popular framework for this task is OpenCV1. It is an open source project and
supports the programming languages: C++, Python and Java. The OpenCV project pro-
vides an excellent documentation2, including many examples and additional explanations
about the computer vision and image processing concepts. Furthermore, many books ex-
ist for learning how to use OpenCV3. An alternative to OpenCV is the open source project
Scikit-Image4. Similar to OpenCV, Scikit-Image provides an excellent documentation with
many practical examples5. In contrast to OpenCV, it only supports the programming lan-
guage Python.

1https://opencv.org/
2https://docs.opencv.org/4.0.0-beta/
3https://opencv.org/books.html
4https://scikit-image.org/
5http://scikit-image.org/docs/stable/auto_examples/index.html

47

6 Implementation

Next, a machine learning library is required which supports CNNs. A huge number of
machine learning frameworks exist such as Theano6, Caffee7, Tensorflow8, MXNet9 and
many more. Analyzing each one of them is beyond the scope of this thesis. The most pop-
ular machine learning framework is arguably Tensorflow. It was originally developed by
Google’s Machine Intelligence Research organization and is now open source. Tensorflow
is used by many companies such as Google, Intel and Twitter [92] and supports several
programming languages such as C/C++, Python, Java, JavaScript, Go and Swift. It can be
used together with the high-level deep learning library Keras10.

Keras is a Python library and optimized for easy and fast development [93]. Only a few
lines of code are required to develop a CNN with Keras. Its user friendly design is the
main reason why it was chosen for this work. It can be used with different backend engines
such as Tensorflow, Theano, or CNTK. However, Keras recommends in their installation
guide to use Tensorflow11. For this reason, Tensorflow is used as a backend engine for
Keras. Since Keras can only be used with Python, Python is used for the implementation.
Both image processing libraries fulfill the requirements and also support Python. How-
ever, due to personal preferences OpenCV was chosen as image processing library.

Now, a GUI framework for Python needs to be chosen. Once again, there are many pos-
sibilities such as Tkinter12, Pyforms13, PyQt14, Kivy15 and more. Due to the fact that Qt
proved to be easy to use in the past, it is used here again. It should be noted that Qt requires
a license for commercial usage. However, this is not an issue since this implementation
will be published as an open source project.

6.2 Graphical User Interface

This section presents more details about the GUI implementation. The features: rescaling
and rotation are implemented by using the imutils library16 which provides basic image
processing functions on top of OpenCV. A bug was found in the imutils rotation function
during the development phase. An integer division was used to calculate the image cen-
ter which reduced the image quality after multiple rotations. The bug could simply be
prevented by using a floating point division to determine the image center. A bug fix was
submitted and accepted17. In order to improve the user experience further, the Softstrip
selection use case has been optimized. A user only needs to click on the four corners of
a Softstrip and it will be extracted automatically. The Softstrip extraction algorithm is
shown in figure 6.1.

After a user clicked on the four Softstrip corners, a perspective transformation is applied.

6http://deeplearning.net/software/theano/
7http://caffe.berkeleyvision.org/
8https://www.tensorflow.org/
9https://mxnet.apache.org/

10https://keras.io
11https://keras.io/#installation
12https://docs.python.org/3/library/tk.html
13https://github.com/UmSenhorQualquer/pyforms
14https://www.qt.io/
15http://kivy.org/
16https://github.com/jrosebr1/imutils
17https://github.com/jrosebr1/imutils/pull/62

48

6.3 Row Extraction

This is done by using the imutils library. Internally, the imutils library computes the di-
mensions of the transformed image18 and then calls the OpenCV API to actually perform
the transformation19. The next step first converts the color image to a grayscale image and
then applies Otsu’s thresholding20 to obtain a binary image.

Usually, a user does not click exactly on the corner positions. In fact, it is recommended
to leave a few mm distance to the corners, so that a little bit of the quiet zone will be
included. This will guarantee that no important information of the Softstrip itself will be
removed during the extraction. The Softstrip’s boundary is then detected with a contour
detection21. The contour detection function will find the boundaries of all white objects.
Since the left start bar and the rack are black, the colors needs to be inverted so that the
whole Softstrip boundary can be detected. Usually, the contour detection will find not
only one but many contours, e.g., a contour for the left start bar, contours for each bar in
the horizontal synchronization section and many more. For this reason, a Gaussian filter
is applied until only one contour is found — the Softstrip contour.

If the detected contour is now used to extract the Softstrip, some of the black areas will
be removed, e.g., the middle section in the horizontal synchronization section. Therefore,
the convex hull22 is computed. Once the complex hull is known, it can be used to extract
the Softstrip and the Softstrip is ready for further processing.

6.3 Row Extraction

Two methods for extracting the rows from the Cauzin Softstrip were presented in section
5.4 on page 41. More implementation details are presented in this section. First, the algo-
rithmic approach is presented in section 6.3.1 and then the CNN approach is presented in
section 6.3.2.

6.3.1 Algorithmic Approach

The steps in the algorithmic row extraction approach are shown in figure 6.3. First, the
whole Softstrip is divided into multiple segments where each section consists of 70 pixel
lines. The boundaries of the black checkerboard and the last rack square are determined
for each segment. The black checkerboard square is located by looking for a white-black-
black pixel pattern. This pixel can either be the start of the first or the second checkerboard
square (see figure 6.2). The rack boundary is located by looking for the first black pixel
in a right-to-left scan (see figure 6.2). The locations are determined for each pixel line
in the segment. After all pixel lines are scanned, the collected locations are filtered. Ev-
ery checkerboard location must be within the checkerboard window. This window marks
roughly the checkerboard area and is calculated with equation 6.1. In addition, every
checkerboard and rack location must occur at least 6 times in the segment. Once the
boundaries are known, the checkerboard and rack pattern can be determined for each
pixel line. Therefore, the color of the center pixel of the left checkerboard and last rack

18https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
19https://docs.opencv.org/3.4.3/da/d54/group__imgproc__transform.html#

gaf73673a7e8e18ec6963e3774e6a94b87
20https://docs.opencv.org/3.4.0/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57
21https://docs.opencv.org/3.3.1/d3/dc0/group__imgproc__shape.html#

ga17ed9f5d79ae97bd4c7cf18403e1689a
22https://docs.opencv.org/3.3.1/d3/dc0/group__imgproc__shape.html#

ga014b28e56cb8854c0de4a211cb2be656

49

6 Implementation

User clicks on Softstrip corners

Thresholding

Contour Detection

Gaussian Filter

Convex Hull

Extract Softstrip

Contours > 1

Contours == 1

Figure 6.1: Image Preprocessing

square is checked. After all segments are processed, adjacent pixel lines with the same
valid pattern, i.e., white-black checkerboard and a rack with a last black square or a black-
white checkerboard and a rack with a last white square, are grouped together. Other
checkerboard-rack combinations are ignored. There is no minimum amount of pixel lines
required to form a row. The reason for this decision is that in some cases only a single
pixel line can be found in a row.

checkerboard start = square width ∗ 2.25
checkerboard end = square width ∗ 4.25

(6.1)

(a) First Checkerboard Square Boundary (b) Last Rack Square Boundary

Figure 6.2: Boundary Detection

50

6.3 Row Extraction

Divide Softstrip into Segments

Use Next Segment

Determine Checkerboard
and Rack Boundaries

Filter Boundaries

Determine Line Patterns

Group Lines by Pattern

More Segments AvailableAll Segments
Processed

Figure 6.3: Algorithmic Row Extraction

6.3.2 CNN Approach

After the CNN row decoding approach proved to be successful, a CNN for extracting rows
was tested as well. First, the training dataset is presented and then the CNN architecture.

6.3.2.1 Training Data

Instead of using the extracted rows by the algorithmic approach, the rows used to train
the CNN were extracted by hand. The main reason for this decision is that the algorithmic
approach is sometimes only able to extract a single pixel line from a row. The CNN
should not learn the mistakes from the previous approach but rather learn how humans
would perform this task. Extracting the rows by hand is a tedious and time-consuming
task. As a consequence, only a small dataset was created. Furthermore, Softstrips usually
consist of only a few hundred rows so in order to reach a dataset size similar to the dibit
dataset, a significant amount of the available Softstrips need to be used to train the CNN.
Alternatively, synthetic training data could be generated, which might be interesting for
future work. Four Softstrips were selected in total to create a training dataset. Those four
Softstrips are:

• Quiksort 1

• Valpost 3

51

6 Implementation

• Muldirec 6

• Fspath 8

All Softstrips are from DS2 and were chosen for a particular reason: the algorithmic ap-
proach had some trouble to extract the rows exactle because they contain visual artifacts
which make the row extraction more difficult. Including those Softstrips into the train-
ing dataset should make the CNN more robust to this kind of visual artifacts. There are
several options for the input data: the checkerboard and the rack, only the checkerboard,
only the rack, or the whole row. Using the whole row does not necessarily provide more
information since the data bits could be the same in both rows. Only the rack and the
checkerboard change with every row and serve therefore as an orientation for the start and
end of a row. During the row extraction process, it was noted that the rack and checker-
board do not always start in the same pixel line. For instance, the checkerboard could
start in pixel line 30 and end in pixel line 40 whereas the rack could start in pixel line 35
and end in pixel line 45. So where does the row begin? If pixel line 30 is chosen as the
start, the pixel line will most likely contain the rack from the previous row. If pixel line 45
is chosen, however, pixel line 45 will most likely contain the checkerboard from the next
row. For this reason, only the checkerboard is chosen as input. Table 6.1 shows the class
distribution in the training dataset.

Class (Splitting Point) # Samples

0 1
4 1
5 8
6 141
7 364
8 980
9 976
10 136

Total 2607

Table 6.1: Row Extraction Class Distribution

Those numbers were created by defining a row window which was slid across the Soft-
strip. The window is 20 pixel lines high. In the first step, the window is placed at pixel
line 0 and the manually extracted rows are used to locate the splitting point. The win-
dow is then moved to this splitting point and the steps are repeated until the end of the
Softstrip is reached. The window height of 20 pixel lines was chosen because it roughly
includes two rows in the before mentioned Softstrips. This is also confirmed by the class
distribution in table 6.1. Most splitting points are at pixel line 8 and 9. A few outliers are
also included, namely line 0, 4 and 5. After reviewing those outliers it was decided to
remove them from the training dataset. The remaining classes are still imbalanced. One
technique to tackle this problem is to use oversampling [94], where samples from the mi-
nority classes are randomly selected and replicated. Table 6.2 shows the training dataset
after the preprocessing step.

52

6.3 Row Extraction

Class (Splitting Point) # Samples

6 980
7 980
8 980
9 980
10 980

Total 4900

Table 6.2: Row Extraction Class Distribution After Preprocessing

6.3.2.2 CNN Architecture

The CNN architecture is shown in listing 6.1. The input for the CNN is a 20× 10 pixel
grayscale image — the window. The first convolution layer uses a 5× 5 kernel and outputs
64 filters. The ReLU activation function is used. The next layer applies maxpooling to
reduce the dimensionality. A 2× 2 kernel is therefore used with a stride of 2. Then follows
a combination of convolution and maxpooling again. This time, the convolution layer
outputs 128 filters. The flatten layer transforms the data to one dimension so it can be
used by the following fully connected layer. The dense layer consists of 500 units (nodes)
and uses the ReLU activation function. The second fully connected layer uses the same
activation function but only 250 units. The last layer consists of 5 units, one for each
class, and uses the softmax activation function which is recommended for multi class
classification [29]. The model was compiled with the recommended parameters [29]:

Loss Function: Categorical Crossentropy

Optimizer: Adam

Metric: Accuracy

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None , 20, 10, 64) 1664

max_pooling2d_1 (MaxPooling2 (None , 10, 5, 64) 0

conv2d_2 (Conv2D) (None , 10, 5, 128) 204928

max_pooling2d_2 (MaxPooling2 (None , 5, 2, 128) 0

flatten _1 (Flatten) (None , 1280) 0

dense_1 (Dense) (None , 500) 640500

dense_2 (Dense) (None , 250) 125250

dense_3 (Dense) (None , 5) 1255
===
Total params: 973 ,597
Trainable params: 973 ,597
Non -trainable params: 0 �

Listing 6.1: Row Extraction CNN Architecture

53

6 Implementation

The training results are shown in figure 6.4. The loss on both the training and validation
set falls dramatically during the first few epochs. One can see multiple peaks after 20
epochs where the loss on the validation set rises significantly. The training can already be
stopped after around 7 epochs with an accuracy of about 95% on the validation set since
the validation loss starts fluctuating from there on and only the training loss decreases
further.

Figure 6.4: Row Extraction Training

6.4 Row Decoding

A few additional techniques are used to improve the row decoding in general. These
techniques are:

• Row Splitting

• Row Shifting

• Change dibits with low confidence (only for CNN approach)

Assume the dibits in figure 6.5 are found in a row. The dibits are only damaged in the
upper half but could still lead to a wrong decoding. The lower half of the row, however,
is completely undamaged. If the row is split into two rows and each half is decoded sepa-
rately, the upper half will most likely fail whereas the lower half will most likely succeed.
In some cases, a single row split might not be enough. For example, if only the upper half

54

6.4 Row Decoding

Figure 6.5: Damaged Dibits

in the lower half is undamaged. In the worst case, only a single pixel line in the entire
row will lead to a correct result. Therefore, if the row cannot be decoded successfully, a
breadth-first-search is applied to split the row into multiple segments. If two row seg-
ments are decoded successfully it does not necessarily mean that the decoded dibits are
equal in both segments. For this reason, all successfully decoded rows need to be stored
and considered later during the checksum test.

All white pixels that are located left to the start bar are removed during the preprocessing.
If a Softstrip has a damaged start bar, e.g., it is only half a dibit wide, the whole row is
shifted to the left. Figure 6.6 illustrates this. The start bar in the upper row is one dibit

Figure 6.6: Shifted Row

wide. The lower row is identical to the upper row except for the start bar which is only
half as wide as in the previous row. As a result, all other dibits are shifted to the left by
half a dibit. Both rows contain the same amount of data dibits. However, the data dibits
are completely different due to the damaged start bar. This can simply be fixed by shifting
the dibits to the right. It is also possible that all data dibits are shifted to the right. This
can happen if the start bar is wider than one dibit. For this reason, if the decoding of a
row fails, the row can be shifted in both directions and the decoding can be repeated.

Every time the CNN classifies a dibit, it also outputs a confidence value. This confidence
value describes how confident the CNN is that its classification is correct. The higher the
confidence value the better. As figure 5.5 on page 44 highlighted, it can be difficult to
classify the correct class to a dibit. For example, the CNN could be 55% confident that a
dibit is a 0, which is a low value. If the row decoding fails, this dibit might be the reason
for the failure. So it might be reasonable to flip this dibit and try the decoding again.

6.4.1 Algorithmic Approach

Figure 6.7 shows the flow in the algorithmic row decoding approach. First, the size of
each color area is determined. Therefore, each column in the row is scanned and if, for
example, the majority of the pixels in a column are black, this column is considered as
black. After the color of all columns is known, the sizes of the different color areas can be
counted. If the smallest color area is only one column wide, the dilation operation with
a 3× 3 kernel is applied and the color area sizes are determined again. In the next step,
the color area sizes are classified, i.e., whether it is one, two, or three dibit squares wide.
The described method in section 5.5 is used to determine the areas which are one dibit
wide. If the rack consists of three black squares, it can be checked if the color area before

55

6 Implementation

the rack has the same size. If so, it is consequently three squares wide. If the rack consists
only of two black squares, the color area before the rack is three squares wide if it is at
least two pixels wider than the second widest color area. The final step creates a reduced
row where each color square is represented by a single value.

Determine Color Area Sizes

Apply Dilation

Color Area Size Classification

Create New Row

Smallest Size == 1

Figure 6.7: Algorithmic Row Decoding

6.4.2 CNN Approach

The algorithmic row decoding approach was designed and implemented first. At that time,
DS2 was the only available dataset with real Softstrips and the algorithmic row decoding
approach was able to decode about 50% of the Softstrips successfully (the approach could
be improved further later). It was decided to try a different approach with a CNN. The
successfully extracted and decoded dibits by the algorithmic approach could be used to
train the CNN. For this reason, only Softstrips from DS2 were used to train the CNN.
Later, the CNN was tested on other datasets as well and proved to be very successful.
Those results are presented in chapter 7.

6.4.2.1 Training Data

The very first CNN was trained with data from a single Softstrip — the first Softstrip of the
Quicksort program. Although this CNN already performed better than the algorithmic
approach it was decided to use more training data. The next CNN was trained with data
from five Softstrips:

• First Softstrip of the Quiksort program

• First Softstrip of the Valpost program

• First Softstrip of the Linklist program

• First Softstrip of the Fspath program

• First Softstrip of the Muldirec program

56

6.4 Row Decoding

There is no particular reason why these Softstrips were chosen except for the fact that
they are the first ones of each program. Again, the data was extracted with the help
of the algorithmic row extraction and row decoding method. Table 6.3 shows the class
distribution in the dataset.

Total # Samples # Samples Class 1 # Samples Class 2

43690 17094 26596

Table 6.3: Row Decoding Training Samples

6.4.2.2 CNN Architecture

Two different CNN architecture are presented in this section: a simple one and a more
complex one. A detailed evaluation of both architectures on all datasets can be found in
chapter 7.

Listing 6.2 shows the simple CNN architecture.

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None , 20, 20, 1) 10

max_pooling2d_1 (MaxPooling2 (None , 10, 10, 1) 0

dropout _1 (Dropout) (None , 10, 10, 1) 0

batch_normalization _1 (Batch (None , 10, 10, 1) 4

flatten _1 (Flatten) (None , 100) 0

dense_1 (Dense) (None , 1) 101
===
Total params: 115
Trainable params: 113
Non -trainable params: 2 �

Listing 6.2: Simple CNN Architecture

The input for the CNN is a 20× 20 pixel grayscale image of a dibit. The convolution layer
(conv2d_1) uses a 3× 3 kernel and outputs one filter. The ReLU activation function is
used for this layer. The next layer applies maxpooling to reduce the dimensions. A 3× 3
kernel is used with a stride of 2. The dropout layer randomly selects 50% of the nodes
and deactivates them. The batch normalization layer normalizes the activations of the
convolution layer after each batch; here a batch size of 32 is used. The next layer (flatten_1)
transforms the data to one dimension so it can be processed in the fully connected layer
(dense_1). The last layer uses the sigmoid activation function and outputs a single value.
The model was compiled with the following parameters:

Loss Function: Binary Crossentropy

Optimizer: Adam

Metric: Accuracy

57

6 Implementation

Listing 6.3 shows the architecture of the more complex model:

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None , 20, 20, 20) 520

max_pooling2d_1 (MaxPooling2 (None , 10, 10, 20) 0

conv2d_2 (Conv2D) (None , 10, 10, 50) 25050

max_pooling2d_2 (MaxPooling2 (None , 5, 5, 50) 0

flatten _1 (Flatten) (None , 1250) 0

dense_1 (Dense) (None , 500) 625500

dense_2 (Dense) (None , 1) 501
===
Total params: 651 ,571
Trainable params: 651 ,571
Non -trainable params: 0 �

Listing 6.3: Complex CNN Architecutre

The input is the same as for the previous CNN; a 20× 20 pixel grayscale image. This
time 20 filters are used to detect features instead of a single one. A 5× 5 kernel is used
in the first convolution layer (conv2d_1) and the ReLU activation function. As before, the
dimensions are reduced with a maxpooling layer which uses a 2× 2 kernel and a stride
of 2. This time, a second convolution layer is used with a 5× 5 kernel which outpus 50
filters. The activation function is again the ReLU function. After the second convolution
layer follows a maxpooling layer to reduce the dimensions again. It uses the same param-
eters as the first maxpooling layer. The flatten layer transforms the data to one dimension
and is followed by a fully connected layer (dense_1) with 500 nodes and a ReLU activa-
tion function. The last layer (dense_2) uses the sigmoid activation function and outputs
a single value. The model was compiled with the same parameters as the first architecture.

Both models achieve almost 100% accuracy on the validation set after 1 epoch. A more
detailed evaluation is presented in chapter 7.

6.5 Summary

This chapter provided more details about the concrete implementation. First, the used
technologies were presented in section 6.1. The following technologies are used:

Programming Language: Python

Image Processing: OpenCV

Deep Learning: Keras with Tensorflow as backend engine

GUI: PyQt

Section 6.2 focused on the GUI implementation. The imutils library was used to imple-
ment the functions: rotation and rescaling. An algorithm was presented to extract the

58

6.5 Summary

Softstrip from an image by clicking on the four Softstrip corners.

Section 6.3 first explained the algorithmic row extraction approach in detail and then
the CNN approach. The training dataset for the CNN was manually created from four
Softstrips. Oversampling was used to create a balanced training dataset. The CNN archi-
tecture was presented and the training results were shown. It was shown that the model
achieves about 95% accuracy on the validation dataset after about 7 epochs.

Section 6.4 first introduced three methods to improve the row decoding in general: split-
ting rows, shifting rows and flip dibits with a low confidence value. The last technique
can only be applied if the CNN approach is used. Next, the algorithmic row decoding
approach was explained in detail. Lastly, the CNN row decoding approach was presented.
Two different CNN architecture are used: a simple one and a more complex one. The
dibits of five Softstrips were used to train the CNNs.

59

7 Evaluation

This section evaluates the digital reader’s performance. First, an evaluation method needs
to be defined. In the case of decoding a Softstrip, the decoding can either be successful or
unsuccessful. The optical reader uses the combination of parity bits and the checksum to
decide whether the decoding was successful or not. As already pointed out in section 3.4
on page 29, this is not a reliable evaluation criteria.

During the development process one particular Softstrip was decoded which contained
a text file. The decoding failed due to an invalid checksum, so the decoded text file was
inspected to locate the error. Listing 7.1 shows the content of the decoded text file.

RED2BLUE.COM converts Apple II and Mac TEXT or DIF files from
strips for use on a PC. This program adds a Linefeed (LF) after
every Carriage Return (CR). PC’s need LF ’s but Apple does not
supply them. RED2BLUE also turns off high bits to convert Apple
Dos 3.3 text to PC DOS text.

HOW TO USE:
- RED2BLUE.COM is a PC program.
- From DOS type RED2BLUE and press ENTER
- Enter Source filename and Destination filename.
- That ’s it.

This is a Public Domain utility. Use it freely. You are responsible
for its proper use. There is no$warranty. �

Listing 7.1: Decoded Text File With Invalid Checksum

As one can see, a single byte is wrongly decoded, i.e., the $ sign between no and war-
ranty is supposed to be a whitespace. Once the error was known, a few parameters were
changed in the source code and the Softstrip was decoded again. The decoded text file was
then inspected again to make sure that everything was correctly decoded. The content of
the decoded file is shown in listing 7.2.

RED2BLUE.COM converts Apple II and Mac TEXT or DIF files from
strips for use on a PC. This program adds a Linefeed (LF) after
every Carriage Return (CR). PC’s need LF ’s but Apple does not
supply them. RED2BLUE also turns off high bits to convert Apple
Dos 3.3 text to PC DOS text.

HOW TO USE:
- RED2BLUE.COM is a PC program.
- From DOS type RED2BLUE and press ENTER
- Enter Source filename and Destination filename.
- That ’s it.

This is a Public Domain utility. Use it freely. You are responsible
for id?dproper use. There ij$warranty. ?% �

Listing 7.2: Decoded Text File With Valid Checksum

61

7 Evaluation

As one can see in listing 7.2, the text file is still not correct. Instead of fixing the whitespace
error, even more errors were added which resulted in a correct checksum again.

The only way to be absolutely confident that the Softstrip was decoded successfully, is
to inspect the decoded file. If the decoded file is a short text file with text in English, this
might take only a few seconds. However, the Softstrip was mainly used to encode soft-
ware so usually the decoded file contains a few hundred lines of source code. Finding a
subtle error in a source code one is not familiar with can take a while. Since inspecting
each file is not feasible, this section refers to a Softstrip as successfully decoded if both the
checksum and all parity checks are correct.

7.1 Accuracy

First of all, four different methods are evaluated in this chapter. They are shown in table
7.1.

Method Row Extraction Row Decoding

1 Algorithmic Algorithmic
2 Algorithmic CNN (Simple)
3 Algorithmic CNN (Complex)
4 CNN CNN (Simple)

Table 7.1: Decoding Methods

Table 7.2 shows the number of successfully decoded Softstrips for each decoding method.
It should be noted that the image quality of the Softstrips in DS1, DS2 and DS5 could be
controlled, i.e., the size of the generated Softstrips could be controlled, the resolution of the
scanned Softstrips could be controlled and most important a Softstrip could be rescanned
if the first scan was distorted. As a result, almost all of the Softstrips from those datasets
are decodable. This is even more impressive if one considers some of the visual artifacts
shown in section 3.5 on page 30. The image quality of the Softstrips in the datasets DS3
and DS4 could not be controlled but some methods are still able to decode about 50% of
them successfully.

Method DS1 (870) DS2 (40) DS3 (58) DS4 (159) DS5 (103) Total (1230)

1 870 31 - - 85 986
2 870 38 31 86 99 1124
3 870 38 35 77 99 1119
4 870 39 0 0 1 910

Table 7.2: Decodable Softstrips

DS1 can be decoded successfully by all methods which is no surprise since it only in-
cludes digitally generated Softstrips without any noise. Most of the Softstrips in DS2 can
also be decoded by all methods. Method 4 achieves the best result on DS2 since both the
row extraction and row decoding CNN were trained with data from DS2. The results of
the different methods on DS3 and DS4 vary drastically. The results of method 1 are not
included at all for those datasets. The reason behind this decision is explained in section
7.2. The fourth method is not able to decode a single Softstrip from DS3 and DS4. The

62

7.2 Multiple Rows

decoding fails because the CNN row extraction method is not able to extract the rows
properly. As a consequence, the CNN row decoding method cannot decode the dibits and
the whole decoding fails. One reason for this is that the row extraction CNN was only
trained with a few training samples. This was clearly not sufficient to learn the relevant
features. However, as already mentioned in section 6.3 creating a large training dataset
manually is a time consuming task and was therefore not feasible for this thesis. Method 2
and 3 are still able to decode almost 50% of the Softstrips in DS3 and DS4. Considering the
bad quality of the Softstrips in those datasets, this is still a very good result. All methods
except the last one perform well on DS5. Again, the small training dataset is the main
reason for the poor performance of method four.

A closer look to method 2 and 3 shows that their performance is almost identical although
the CNN in method 3 uses a far more complex architecture. This clearly shows that the
simple architecture which was chosen in method 2 is sufficient to detect the relevant fea-
tures in a dibit. This is also confirmed by the overall result: method 2 achieves the best
result and is able to decode 1124 of the 1230 Softstrips successfully (about 91%).

7.2 Multiple Rows

Section 6.4 on page 54 introduced three strategies that can be applied if the row decoding
fails. Those strategies are: row splitting, row shifting, and changing dibits with a low
confidence value. Usually, all three strategies are applied. The problem is that they might
return different successfully decoded rows. At this point, there is no option to decide
which one is the right solution so they need to be tested during the checksum test. If
multiple rows have more than one solution, all possible combinations need to be tested.
The combinations can be determined with the cartesian product and the total number of
combinations can be determined with equation 7.1, where Ri is the row at position i.

|Combinations| = |R0| × |R1| × · · · × |Rn| (7.1)

The Softstrip rows in DS3 and DS4 could not be decoded with method 1 on the first try,
i.e., the aforementioned strategies had to be applied. Since they had to be applied for al-
most every row and returned multiple possible solutions for each row, the total number of
combinations was extremely high. Even if the checksum was correct in those cases, it was
sometimes just pure coincidence. This was also confirmed by the file meta information
such as filename or strip id which did not make any sense in the successfully decoded
cases. For this reason, the results of method 1 for DS3 and DS4 are not included in table 7.2.

This highlights also a second problem. The first combination which passes the check-
sum test, will be accepted. However, there is no guarantee that this combination is the
right one. A different approach is to only use the most common solution from the different
decoding strategies instead of using them all. Table 7.3 compares both approaches.

Strategy Method DS1 DS2 DS3 DS4 DS5 Total

Cartesian Product 3 870 38 35 77 99 1119
Most Common 3 870 34 34 31 77 1050

Table 7.3: Comparison of Cartesian Product and Most Common Strategy

As one can see, the cartesian product strategy performs better than the most common

63

7 Evaluation

strategy. Most notable is the difference for DS4. However, it should be noted that the
cartesian product strategy most likely creates some false positives.

7.3 Runtime Performance

Although the runtime performance has a low priority this section provides some runtime
statistics. The digital decoder was tested on the following system:

Operating System: Arch Linux

CPU: Intel i7-7700K (8) with 4.500GHz

Memory: 16 GB

Python: Version 3.6.6

The performance of the different methods on DS1 is shown in table 7.4. The Softstrips in
this dataset can be decoded extremely fast. Method 1 is by far the fastest method for this
dataset, with an average decoding time of only 3 seconds. The slowest method is method
4, with an average decoding time of 27 seconds. As one can see, the methods with a CNN
are significantly slower than method 1.

Method Minimum Maximum Average

1 00:02 00:04 00:03
2 00:07 00:37 00:18
3 00:11 00:26 00:18
4 00:07 00:55 00:27

Table 7.4: DS1 Runtime Performance
Format: MM:SS

Table 7.5 shows the performance of the different methods on DS2. Again, the fastest
decoding was performed by method 1. However, one can see that the maximum runtime
is extremely high. Some rows could not be decoded successfully on the first try. Therefore,
the different row decoding strategies had to be applied. As a result, all combinations of
the valid rows had to be tested during the checksum check which increases the runtime
dramatically. It should be noted that the decoding was stopped after 21 minutes. Since
the average time is still low, only a few Softstrips reached the time limit. Method 3 is the
only one that does not reach the time limit on this dataset and has therefore the lowest
average runtime.

Method Minimum Maximum Average

1 00:04 21:00 01:14
2 00:12 21:00 00:55
3 00:15 00:30 00:17
4 00:14 21:00 01:22

Table 7.5: DS2 Runtime Performance
Format: MM:SS

Table 7.6 shows the performance of the different methods on DS3. Since the decoding
results of method 1 for DS3 and DS4 were not included in table 7.2, they are left out

64

7.3 Runtime Performance

here as well. At first sight, method 4 seems to be the fastest method on DS3. However,
table 7.2 showed that method 3 is not able to decode a single Softstrip from DS3. In fact,
the row extraction fails early so the whole decoding process stops early. As a result, the
average runtime is low. One can see that method 3 and 4 reached the maximum time
limit again. Compared to table 7.5, the average runtime for both methods increased by a
few minutes. Due to the lower image quality, more rows have multiple possible solutions
which increase the number of combinations during the checksum test and therefore the
overall runtime.

Method Minimum Maximum Average

1 - - -
2 00:17 21:00 06:28
3 00:15 21:00 05:07
4 00:21 03:23 01:22

Table 7.6: DS3 Runtime Performance
Format: MM:SS

Table 7.7 shows the performance of the different methods on DS4. The results of method
1 are again not included for the same reason as before. The results look similar to the ones
in table 7.6 which is no surprise since the Softstrip image quality is also similar.

Method Minimum Maximum Average

1 - - -
2 00:29 21:00 06:55
3 00:29 21:00 06:39
4 00:32 21:00 03:53

Table 7.7: DS4 Runtime Performance
Format: MM:SS

Table 7.8 shows the performance of the different methods on DS5. Although the maximum
time limit was reached by all methods the average runtime is relatively low, except for
the average time of method 4. Method 2 and 3 can decode the same amount of Softstrips
from DS5 but the average time of the method 2 is almost twice as high as the average time
of method 3. Apparently, the simple CNN architecture used in method 2 does make more
decoding errors than the complex CNN architecture used in method 3, which is why the
other decoding strategies have to be applied and consequently increase the runtime.

Method Minimum Maximum Average

1 00:07 21:00 02:39
2 00:13 21:00 01:44
3 00:08 21:00 00:51
4 00:11 21:00 05:24

Table 7.8: DS5 Runtime Performance
Format: MM:SS

To conclude this section, the better the image quality the faster the decoding. The different

65

7 Evaluation

row decoding strategies are useful to increase the number of successfully decoded Soft-
strips but they can increase the runtime significantly. Especially, if the image resolution is
high. In this case, a row consists of more pixel lines which means there are more splitting
possibilities if a row cannot be coded on the first try.

7.4 Limitations

So far the digital Softstrip decoder was only tested with high resolution images. This
section evaluates the performance of the digital decoder on lower resolution images. In
order to reduce the overall runtime, only a subset of DS5 is chosen for this task. The
dataset contains 42 Softstrips in total. In each iteration, the image resolution is reduced
by additional 10%, i.e., the first iteration uses the original image with 100% of the image
resolution, the second iteration reduces the original image resolution by 10%, the third
iteration reduces the original image resolution by 20% and so on. The Softstrips in DS5
were scanned with 1200 DPI and have an image resolution of about 800× 8000 pixels. The
results are shown in table 7.9.

Image Resolution Method 1 Method 2

100% 24 42
90% 28 40
80% 32 40
70% 28 38
60% 17 37
50% 27 33
40% 29 Error
30% 8 Error
20% 0 Error
10% 0 Error

Table 7.9: Image Resolution Test

Table 7.9 shows that the lower the image resolution the less Softstrips can be successfully
decoded with method 2. The results for method 1 are fluctuating. It is interesting that
method 1 performs better with slightly lower image resolutions. Even after the image
resolution was reduced by 70% it could still decode 8 Softstrips successfully. The lowest
image resolution that could be decoded by method 2 was about 380× 4800. Method 1
could even decode Softstrips with an image resolution of about 220× 2800.

7.5 Summary

Different aspects of the digital Softstrip reader were evaluated in this chapter. Table 7.2
showed that method 2 is the most successful method that can decode 1124 of the 1230
successfully (about 91%). The worst performing method is still able to decode 910 of the
1230 Softstrips. Section 7.3 evaluated the runtime performance of the different methods
and showed that the fastest decoding was done in only 2 seconds. However, the decoding
increased dramatically as soon as the image quality became worse. In some cases the
decoding had to be stopped after 21 minutes. Section 7.4 showed that the digital Softstrip
decoder is also able to deal with different image resolutions. However, method 2 works

66

7.5 Summary

better with high resolution images.

In general, there are two reasons for a decoding failure: either the row extraction or the
row decoding fails. However, it is more likely that the dibit extraction fails than the dibit
classification during the row decoding. If the input image for the CNN is of good quality,
the classification will most likely be correct. In many cases, however, the classification
is even for a human difficult. In order to improve the row decoding, the dibit extraction
needs to be improved. The most reliable part of the decoding pipeline is the header ex-
traction. It can determine the correct number of bytes in each row for all Softstrips in the
corpus.

67

8 Discussion & Future Work

First, more information are provided about what happened after the Cauzin Softstrip
disappeared. Then, a conclusion is drawn before the last section presents improvements
and research questions for future work.

8.1 Datastrip

It should be noted that the information presented in this section are based on various
website snapshots of the Datastrip website from the wayback machine of the internet
archive 1. Many of the statements could not be verified with other sources. However,
the statements are informative and therefore included in this section.

Unfortunately, the Cauzin Softstrip could not establish itself as a software distribution
alternative. However, this does not mean that the Softstrip vanished forever. In 1993,
Jack Walker acquired the Softstrip patent rights and formed Datastrip Holdings [95]. The
Cauzin Softstrip was rebranded as Datastrip and its new field of application was identifi-
cation cards. It is interesting that Cauzin Systems was the original assignee of the patent
for this particular use case [21], but for unknown reasons they did not pursue this idea.
From then on the Datastrip was used for driver’s licenses, id cards, social security cards
and more.

A new series of bar code readers were released together with the Datastrip [96]:

Wand Reader: Two variants of wand readers were available: one with an integrated
LCD display and one which required a host for displaying information.
It could be used like a typical handheld scanner and was able to read
Datastrips on a variety of documents.

Swipe Reader: Similar to the Wand Reader, the Swipe Reader was available in two
variants — with an integrated LCD and without. In order to decode
Datastrips, the card or document just needed to be swiped.

LCD Reader: The LCD Reader was the premium model. It was a motorised device
and could read standard ISO/IEC 7810 cards in approximately one
second. The scanned information was displayed on the integrated LCD
display.

A few years later, the Datastrip was used to store biometric data such as fingerprints. For
this purpose, a new version of the Datastrip was developed — the 2DSuperscript. The
main difference between both bar codes was [97]:

Datastrip: The usage of the Datastrip is intended for the public domain.

2DSuperscript: The 2DSuperscript can be used with proprietary modules such as com-
pression or fingerprinting. These modules require additional licenses.

1https://archive.org/

69

8 Discussion & Future Work

In order to check if the finger print of a person matches with the stored one in the Datastrip,
the bar code reader needed to be extended with a fingerprint scanner. For this reason, new
bar code readers were produced [98]:

DSVerify2D: A portable bar code reader for 2DSuperscript, Datastrip2D, PDF-417
and OCR-B. It also includes a fingerprint sensor for biometric verifica-
tion.

PCRead2D: Reads bar codes on identification cards and requires a connection to a
PC.

The transition from distributing software to storing personal information on identification
cards proved to be very successful. A few examples of its application are:

• Continental Trust Bank in Nigeria introduced the Datastrip for their customer saving
accounts [99].

• Airport Aviation Services Sri Lanka introduced the Datastrip on ID cards for their
employees [100].

• Integration of the Datastrip into Synercard’s Asure ID photo identification software
[101].

• Datastrip on national ID cards in Cambodia [102].

• Diamond Bank in Nigeria on banking cards [103].

• Asia Pacific Economic Cooperation introduces the Datastrip on business travel cards
[104].

• Datastrip on national ID cards in Yemen [105].

• Datastrip on social security ID cards in Zimbabwe [106].

• Datastrip on student id cards [107].

• Liberian International Ship and Corporate Registry introduces the Datastrip on
seafarer identity cards [108].

• San Andrés Island in Colombia introduces the Datastrip on new resident ID cards
[109].

Both bar codes are improved versions of the original Cauzin Softstrip [110]. An example
of a Datastrip is shown in figure 8.1. Most notably, the Datastrip replaced the rack by a
black bar (185), similar to the start bar on the left side (125). The checkerboard is removed
as well. Instead, a 4-bit gray code row address pattern, one on the left side (130) and one
on the right side (190), is added. The row address pattern is incremented in every row.
Incrementing a digit in a gray code always changes only a single bit [111]. Table 8.1 shows
the gray code for a 4-bit digit [111].

Apparently, the Datastrip does not use dibits anymore. The patent states:

The fundamental unit for encoding information is called a "bit area", which
may be printed or blank ... information in a preferred embodiment is encoded
in the code using a direct binary encoding method wherein a bit area in the
printed code may represent a bit of user data. This achieves a significant im-
provement in information density over the dibit encoding methodology used

70

8.1 Datastrip

Figure 8.1: Datastrip
This figure is originally from [110].

Decimal Gray Code Decimal Gray Code

0 0000 8 1100
1 0001 9 1101
2 0011 10 1111
3 0010 11 1110
4 0110 12 1010
5 0111 13 1011
6 0101 14 1001
7 0100 15 1000

Table 8.1: Gray Code

in U.S. Pat. No. 4,782,221.
— Two-Dimensional Printed Code For Storing Biometric Information And In-

tegrated Off-Line Apparatus For Reading Same [110]

This is also confirmed by the row address pattern. Both row address patterns consist of
four bit areas, one bit area for one bit of the gray code. If the Datastrip were using dibits, it
would require two bit areas for one gray code bit. Additionally, if one looks closely at the
Datastrip in figure 8.1 they can see four or even more black bit areas side by side. These
areas would be invalid in a Cauzin Softstrip. However, the book Bar Codes: technology and
implementation devotes one section to the Datastrip and describes it as follows:

A Datastrip Code consists of a matrix pattern, comprising very small, rect-
angular black and white areas (or Dibits).
— Datastrip Code in Bar Codes: technology and implementation [112]

71

8 Discussion & Future Work

This gives the impression that the Datastrip still uses dibits. However, the information in
the patent strongly indicates that dibits were replaced with single bit areas.

Instead of parity and checksum checks, the Datastrip uses the Reed-Solomon error correc-
tion algorithm. Different error correction levels can be selected in the Datastrip bar code
creation software, which allow a restoration of the Datastrip even if 50% of its content is
damaged [113].

Eventually, Datastrip Inc. disappeared and the Datastrip rights were aquired by Smart
Media Innovations in 2011 [114].

8.2 Conclusion

Three research questions were asked in the beginning which can be answered now:

Is it possible to decode the Cauzin Softstrip with a digital reader?

This thesis created a digital Softstrip and presented different methods for extracting and
decoding the Softstrip rows. All of them are able to decode most of the Sofstrips in the
corpus. The best method is able to decode about 91% of the 1230 Softstrips so this question
can be answered with a clear yes.

What are the main difficulties while decoding the Cauzin Softstrip?

The first difficulty is to extract the bar code rows exactly. Although the Cauzin Softstrip
uses two alignment guides, the checkerboard and the rack, distortions or noise can make
the row extraction more complicated. Once the row extraction is finished, the next dif-
ficulty is to extract and to classify the dibits in a row. The included parity bits are not
sufficient to detect all decoding errors. The same is true for the checksum. A better error
detection or even error correction method would have made the decoding a lot easier.

What are the limitations of the digital reader?

Chapter 7 showed that the decoding is more successful on high resolution images. This is
not an issue if one can control the scanning quality. However, it makes decoding Softstrips
where one cannot control the image quality more difficult. In addition, the decoding time
increases dramatically if the image quality becomes worse.

One of the main challenges during the development of the digital Softstrip decoder was
the limited amount of available Softstrips. In the beginning of this work, only digital gen-
erated Softstrips and scanned Softstrips from the book Animated Algorithms were available.
Therefore, the digital decoder was optimized to decode those Softstrips. Later, a StripWare
collection was found on ebay which could be obtained. The new Softstrips introduced
many new challenges to the digital decoder. This happened again when the scanned Soft-
strip collections from the internet were found. Due to the small dataset in the beginning,
a more specialized decoder was created first which needed to be more generalized every
time a new dataset was introduced. Nevertheless, the main goal of this thesis has been
fulfilled: Giving people access to the encoded data in the Cauzin Softstrip again without
the need of an optical Softstrip reader.

72

8.3 Future Work

8.3 Future Work

8.3.1 Softstrip Recognition

In the beginning of this work, a GUI was designed and implemented which allows user
to extract multiple Softstrips from an image. During the implementation of the digital
decoder itself, it was noticed that one has to be extremely carefully while extracting the
Softstrips. Even minor rotations of 0.01◦ might lead to a decoding failure. For this reason,
an image manipulation program such as Gimp was used to extract the Softstrips from an
image. However, it required sometimes several tries until the Softstrip was extracted cor-
rectly and could be successfully decoded by the digital reader. Even though the Softstrip
was extracted while using a 500% zoom. Therefore, an automatic Softstrip recognition
and extraction system might be implemented in future work.

8.3.2 Optical vs Digital

Chapter 7 evaluated the performance of the digital Softstrip reader. Although the results
are remarkable it would be interesting to see how the digital reader compares to an optical
Softstrip reader. Unfortunately, a working optical reader could not be obtained for this
work so this comparison needs to be done in a future work.

The digital reader has some minor advantages compared to the optical reader:

1. Alignment marks are not required.

2. It is easier to fix a damaged Softstrip digitally.

3. The Softstrip size is not restricted.

Point one is just a minor bonus that might be useful if a Softstrip is missing the alignment
marks. However, the alignment marks of all the Softstrips used in this thesis were intact.
Only the digital generated ones do not have alignment marks but they were not created
by the official Softstrip software.

The next point might be more useful. The Cauzin Softstrip Reader uses infrared light
for scanning the bar code. This has the huge advantage that, if, for example, coffee is
spilled over the bar code, it is still decodable [115]. One can even use a pen to write on the
bar code and the optical reader is still able to decode the Softstrip[115]. This can be used
as a copy protection. If such a Softstrip is copied, the pen becomes printer ink and will
be detected by the optical reader and will cause a decoding error. Although users benefit
from this feature, it makes repairing a Softstrip more complicated. It is not possible to take
a pen and draw, for example, a missing rack. A special pen is required whose ink matches
the reflectance property of printer ink. On the other hand, repairing a damaged Softstrip
for the digital reader only requires an image manipulation program such as Gimp2.

Lastly, it is not required to restrict the Softstrip’s size if the digital reader is used. Instead
of splitting large files into multiple Softstrips, a single large Softstrip can be generated.
This removes the overhead of the additional file header on the other Softstrips. However,
this feature is only nice to have since no new Softstrips are generated anymore.

Scanning and decoding a single Softstrip with the optical reader takes about 30 seconds

2https://www.gimp.org/

73

8 Discussion & Future Work

[15]. If a file consists of multiple Softstrips, the optical reader needs to be adjusted again
for each Softstrip. This increases the total decoding time. If the optical reader is not ad-
justed carefully enough, a decoding error occurs and a rescan is required, increasing the
total decoding time further. It would be interesting to know how common this is.

Advertisements for the Cauzin Softstrip Reader often highlighted its accuracy:

In fact, strip data accuracy is checked via parity bits at the beginning and
end of every data line, as well as by a strip checksum. This unique design
results in an undetected bit error rate of less than one bit error per 10 billion
bits.
— The Art of Stripping: Marketing Material [115]

As section 3.4 on page 3.4 and chapter 7 on page 7 showed, the error detection methods
are not sufficient to detect all errors and a fail is relatively common. Does this only occur
while using the digital reader or also with the optical reader?

The last interesting point to test is whether the digital and optical reader deal differently
with specific errors. For example, which reader performs better if:

• the rack is damaged or even missing?

• the checkerboard is damaged or even missing?

• the printer ink is smeared in the data area?

• some dibits are damaged or even missing?

74

Bibliography

[1] A. Denso, “QR Code Essentials,” Denso Wave, vol. 900, 2011.

[2] N. Tredennick, “Microprocessor-based computers,” Computer, vol. 29, no. 10, pp. 27–
37, 1996, I S S N: 0018-9162. D O I: 10.1109/2.539718.

[3] M. Real and R. Warren, A Revolution in Progress: A History of Intel to Date. Intel
Corporation, Corporate Communications Department, 1984, p. 14. [Online]. Avail-
able: https://www.intel.com/Assets/PDF/General/15yrs.pdf (visited on
10/30/2018).

[4] M. R. Betker, J. S. Fernando, and S. P. Whalen, “The history of the microprocessor,”
Bell Labs Technical Journal, vol. 2, no. 4, pp. 29–56, 1997.

[5] Apple Computer Inc., Apple II Reference Manual, 1979, p. 88. [Online]. Available:
https://archive.org/details/Apple_II_Reference_Manual_1979_Apple
(visited on 10/30/2018).

[6] Commodore Business Machines Inc., PET Personal Computer User Manual, Oct. 1978.
[Online]. Available: https://archive.org/details/PET_2001-8_Personal_
Computer_User_Manual_1978-10_Commodore (visited on 10/30/2018).

[7] P. Diskin, “Nintendo Entertainment System Documentation,” Tokyo: Nin-tendo,
2004.

[8] Compute!’s Gazette, vol. 2, no. 2, 168ff, 1984. [Online]. Available: https://archive.
org/stream/1984-02-computegazette/Compute_Gazette_Issue_08_1984_Feb#
page/n169 (visited on 10/30/2018).

[9] Apple Computer Inc., “Introducing Disk II,” Contact 2, p. 2, Jun. 1978.

[10] “Apple II Accessories,” The Apple Orchard, p. 66, 1980. [Online]. Available: https:
//archive.org/stream/Apple_Orchard_1980_Fall_v1n2#page/n67 (visited on
10/30/2018).

[11] K. Budnick, Bar Code Loader. BYTE Publications Inc., 1977.

[12] K. Savetz, D. Picard, K. Garretson, and N. Enzenauer. (Dec. 2017). Databar OS-
CAR, ANTIC The Atari 8-bit Podcast, [Online]. Available: https://ataripodcast.
libsyn.com/antic-interview-321-databar-oscar (visited on 10/30/2018).

[13] J. Romero. (no date). Bongo’s Bash, [Online]. Available: https : / / rome . ro /
bongosbash (visited on 10/30/2018).

[14] Cauzin Systems Inc., Softstrip Business Advantage, 1986. [Online]. Available: https:
//archive.org/stream/CauzinSoftstrip/Softstrip%20Business%20Advantage#
page/n0/mode/2up (visited on 10/30/2018).

[15] L. G. Johnson, “New Solutions to Storage Hassles,” ABAJ, vol. 72, p. 90, 1986.

[16] Cauzin Systems Inc., “It’s amazing what you can reveal when you strip,” Byte,
vol. 11, no. 3, pp. 294–295, Mar. 1986.

[17] “This issue’s Softstrip: Income tax spreadsheet,” II Computing, vol. 2, no. 3, pp. 58–
59, Feb. 1987.

75

Bibliography

[18] “Softstrip Programs are everywhere,” inCider, vol. 4, no. 9, pp. 78–79, Sep. 1986.

[19] M. P. Barnett and S. J. Barnett, Animated Algorithms: A Self-teaching Course in Data
Structures and Fundamental Algorithms. New York, NY, USA: McGraw-Hill, Inc.,
1986, I S B N: 0-07-003797-3.

[20] “The Editors’ choice awards for 1986,” MacUser, vol. 3, no. 1, pp. 55–56, Jan. 1987.

[21] J. Glaberson and S. Santulli, “Card reader for receiving a card bearing an imprinted
data strip, self positioning the card in a pre-determined position and scanning the
imprinted data strip in two directions,” pat., US Patent 4,886,957, 1989.

[22] K. Savetz, B. Brass, and P. D’Amato. (Jan. 2016). Cauzin Softstrip, ANTIC The Atari
8-bit Podcast, [Online]. Available: https://ataripodcast.libsyn.com/antic-
interview-115-bob-brass-and-peter-damato-cauzin-softstrip (visited on
10/30/2018).

[23] “It’s amazing what you can reveal when you strip,” Byte, vol. 11, no. 2, pp. 154–155,
Feb. 1986.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied
to Document Recognition,” vol. 86, pp. 2278 –2324, Dec. 1998.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification with Deep
Convolutional Neural Networks,” in Advances in Neural Information Processing Sys-
tems 25, Curran Associates, Inc., 2012, pp. 1097–1105. [Online]. Available: http:
/ / papers . nips . cc / paper / 4824 - imagenet - classification - with - deep -
convolutional-neural-networks.pdf (visited on 10/30/2018).

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[28] Y. Yang, Y. Li, C. Fermüller, and Y. Aloimonos, “Robot Learning Manipulation
Action Plans by"watching"unconstrained Videos from the World Wide Web.,” in
AAAI, 2015, pp. 3686–3693.

[29] F. Chollet, Deep Learning with Python, eng, 1st ed. Manning Publications, 2017, I S B N:
9781617294433.

[30] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Net-
works,” CoRR, vol. abs/1311.2901, 2013.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[32] A. Cauchy, “Méthode générale pour la résolution des systemes d’équations simul-
tanées,” Comp. Rend. Sci. Paris, vol. 25, no. 1847, pp. 536–538, 1847.

[33] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[35] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for machine learning,
vol. 4, no. 2, pp. 26–31, 2012.

76

Bibliography

[36] P. J. Werbos, “Backpropagation through time: What it does and how to do it,”
Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990, I S S N: 0018-9219. D O I:
10.1109/5.58337.

[37] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pooling
in visual recognition,” in Proceedings of the 27th international conference on machine
learning (ICML-10), 2010, pp. 111–118.

[38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[39] R. C. Gonzalez, R. E. Woods, et al., Digital image processing, 2002.

[40] T. Kumar and K. Verma, “A Theory Based on Conversion of RGB Image to Gray
Image,” International Journal of Computer Applications, vol. 7, no. 2, pp. 7–10, 2010.

[41] T.-M. Rhyne, Applying Color Theory to Digital Media and Visualization. CRC Press,
2016.

[42] M. Grundland and N. A. Dodgson, “Decolorize: Fast, contrast enhancing, color to
grayscale conversion,” Pattern Recognition, vol. 40, no. 11, pp. 2891–2896, 2007.

[43] OpenCV, “Color conversions,” 2018. [Online]. Available: https://docs.opencv.
org/3.4.2/de/d25/imgproc_color_conversions.html#color_convert_rgb_
gray (visited on 10/30/2018).

[44] L. Shapiro and G. C. Stockman, “Computer Vision. 2001,” ed: Prentice Hall, 2001.

[45] Gimp, Histogram dialog, unknown. [Online]. Available: https://docs.gimp.org/
2.10/en/gimp-histogram-dialog.html (visited on 10/30/2018).

[46] E. R. Dougherty, “An Introduction to Morphological Image Processing,” DC O’Shea,
SPIE Optical Engineering Press, Bellingham, WA, USA, 1992.

[47] L. Vincent, “Morphological grayscale reconstruction in image analysis: Applica-
tions and efficient algorithms,” IEEE transactions on image processing, vol. 2, no. 2,
pp. 176–201, 1993.

[48] R. Szeliski, Computer vision: algorithms and applications. Springer Science & Business
Media, 2010.

[49] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
MIT press, 2009.

[50] F. P. Preparata and S. J. Hong, “Convex hulls of finite sets of points in two and
three dimensions,” Communications of the ACM, vol. 20, no. 2, pp. 87–93, 1977.

[51] R. L. Graham, “An efficient algorithm for determining the convex hull of a finite
planar set,” Info. Pro. Lett., vol. 1, pp. 132–133, 1972.

[52] R. A. Jarvis, “On the identification of the convex hull of a finite set of points in the
plane,” Information processing letters, vol. 2, pp. 18–21, 1973.

[53] J. Sklansky, “Finding the convex hull of a simple polygon,” Pattern Recognition
Letters, vol. 1, no. 2, pp. 79–83, 1982.

[54] ——, “Measuring concavity on a rectangular mosaic,” IEEE Transactions on Com-
puters, vol. 100, no. 12, pp. 1355–1364, 1972.

[55] G. T. Toussaint and H. El Gindy, “A counterexample to an algorithm for comput-
ing monotone hulls of simple polygons,” Pattern Recognition Letters, vol. 1, no. 4,
pp. 219–222, 1983.

77

Bibliography

[56] A. Bykat, “Convex hull of a finite set of points in two dimensions,” Information
Processing Letters, vol. 7, no. 6, pp. 296–298, 1978.

[57] OpenCv. (2018). Python convex hull, [Online]. Available: https://docs.opencv.
org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.
html?highlight=convex%20hull#cv2.convexHull (visited on 10/30/2018).

[58] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N.
Yager, E. Gouillart, T. Yu, and the scikit-image contributors, “Scikit-image: Image
processing in Python,” PeerJ, vol. 2, e453, Jun. 2014, I S S N: 2167-8359. D O I: 10.
7717/peerj.453. [Online]. Available: http://dx.doi.org/10.7717/peerj.453.

[59] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE trans-
actions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[60] OpenCV, Otsu’s binarization, 2018. [Online]. Available: https://docs.opencv.org/
3.4/d7/d4d/tutorial_py_thresholding.html (visited on 10/30/2018).

[61] R. Jain, R. Kasturi, and B. G. Schunck, Machine vision. McGraw-Hill New York, 1995,
vol. 5.

[62] M. K. Vairalkar and S. Nimbhorkar, “Edge detection of images using sobel oper-
ator,” International Journal of Emerging Technology and Advanced Engineering, vol. 2,
no. 1, pp. 291–293, 2012.

[63] J. Canny, “A computational approach to edge detection,” IEEE Transactions on
pattern analysis and machine intelligence, no. 6, pp. 679–698, 1986.

[64] B. Green, “Canny edge detection tutorial,” Retrieved: March, vol. 6, p. 2005, 2002.

[65] P. V. Hough, Method and means for recognizing complex patterns, US Patent 3,069,654,
1962.

[66] R. C. Palmer, The bar code book: A comprehensive guide to reading, printing, specifying,
evaluating, and using bar code and other machine-readable symbols. Trafford Publishing,
2007.

[67] P. Service, “POSTNET Barcode Discontinuation,” 2012. [Online]. Available: https:
//www.gpo.gov/fdsys/pkg/FR-2012-03-02/pdf/2012-5050.pdf (visited on
10/30/2018).

[68] Y. P. Wang, System for encoding and decoding data in machine readable graphic form, US
Patent 5,243,655, 1993.

[69] International Air Transport Association, “Bar Coded Boarding Pass (BCBP),” 2016.

[70] N. Degara-Quintela and F. Perez-Gonzalez, “Visible encryption: Using paper as
a secure channel,” in Security and Watermarking of Multimedia Contents V, Interna-
tional Society for Optics and Photonics, vol. 5020, 2003, pp. 413–423.

[71] Microscan Systems, “Fundamentals of PDF417 Symbology,” 2015.

[72] Y. J. Kim and J. Y. Lee, “Algorithm of a perspective transform-based PDF417 bar-
code recognition,” Wireless Personal Communications, vol. 89, no. 3, pp. 893–911,
2016.

[73] M. Trummer and J. Denzler, “Reading out 2D Barcode PDF417,” Progress in Pattern
Recognition, p. 179, 2007.

[74] R. L. Brass, J. Glaberson, R. W. Mason, A. J. L’Heureux III, S. Santulli, G. T. Roth, J.
Frega, and H. S. Imiolek, “Optical reader for printed bit-encoded data and method
of reading same,” pat., US Patent 4,692,603, 1987.

78

Bibliography

[75] R. L. Brass, J. Glaberson, R. W. Mason, S. Santulli, G. T. Roth, W. M. Feero, and
R. K. Balaska Jr, “Method and apparatus for transforming digitally encoded data
into printed data strips,” pat., US Patent 4,754,127, 1988.

[76] R. L. Brass, J. Glaberson, R. W. Mason, S. Santulli, and G. T. Roth, “Printed data strip
including bit-encoded information and scanner control,” pat., US Patent 4,782,221,
1988.

[77] Cauzin Systems Inc., Reader Spec: Technical Specification for the Softstrip Reader Inter-
face, 1986. [Online]. Available: https://archive.org/details/CauzinSoftstrip
(visited on 10/30/2018).

[78] Unknown, “Softstrip Magazine Strips Collection,” [Online]. Available: https://
www.apple2scans.net/tag/cauzin-softstrip-reader/ (visited on 10/30/2018).

[79] Cauzin Systems Inc., “Softstrip System Application Notes,” 1986. [Online]. Avail-
able: https://archive.org/stream/CauzinSoftstrip/Softstrip%20System%
20Application%20Notes#page/n0 (visited on 10/30/2018).

[80] C. Osborn, Distripitor, Github, 2016. [Online]. Available: https://github.com/
FozzTexx/Distripitor (visited on 10/30/2018).

[81] D. Nichols, “OSCAR,” Enthusiast’99, vol. 1, no. 4, p. 26, Nov. 1983. [Online]. Avail-
able: https://archive.org/details/E99-1183 (visited on 10/30/2018).

[82] “Programming The Home Computer,” Databar Magazine Atari Edition, p. 101, 1983.
[Online]. Available: https://archive.org/stream/DatabarMagazineAtariEdition/
Databar_Magazine_Atari_Edition#page/n99 (visited on 10/30/2018).

[83] Databar Corporation, Optical Scanning Reader Box, circa 1983. [Online]. Available:
https://archive.org/details/DatabarOSCARbox (visited on 10/30/2018).

[84] “Collecting bottles of broken things, pastor manul laphroaig with theory and
praxis could be the man who sneaks a look behind the curtain!” International Jour-
nal of Proof-of-Concept or Get The Fuck Out, pp. 53,54, Jun. 2016.

[85] P. Teuwen, OSCAR, Github, 2016. [Online]. Available: https : / / github . com /
doegox/Oscar (visited on 10/30/2018).

[86] Databar Corporation, An Introduction to OSCAR and Bar Code Scanning, 1983. [On-
line]. Available: http://www.mainbyte.com/ti99/hardware/oscar/read_first_
oscar.pdf (visited on 10/30/2018).

[87] C. Osborn. (2016). Encoding Software in Barcodes, the Eight-Bit Magazine Way,
[Online]. Available: http : / / www . insentricity . com / a . cl / 265 / encoding -
software-in-barcodes-the-eight-bit-magazine-way (visited on 10/30/2018).

[88] Cauzin Systems Inc., Cauzin StripWare Stripper Software (DOS 3.3). [Online]. Avail-
able: http://www.apple2scans.net/2015/12/20/cauzin-softstrip-reader-
manuals-software-etc/ (visited on 10/30/2018).

[89] C. Osborn. (2016). Another Retro Challenge Has Arrived: CauzCoin! [Online].
Available: http://www.insentricity.com/a.cl/266/another-retro-challenge-
has-arrived-cauzcoin (visited on 10/30/2018).

[90] W. Sowerbutts. (2016). Solving the CauzCoin Retro BattleStations Challenge, [On-
line]. Available: http://sowerbutts.com/cauzcoin/ (visited on 10/30/2018).

[91] E. M. D. R. N. Taylor N. Medvidovic, Software Architecture: Foundations, Theory, and
Practice. Wiley, 2009.

[92] Tensorflow. (2018). About Tensorflow, [Online]. Available: https://www.tensorflow.
org/ (visited on 10/30/2018).

79

Bibliography

[93] Keras. (2018). Keras: The Python Deep Learning library, [Online]. Available: https:
//keras.io/ (visited on 10/30/2018).

[94] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class imbal-
ance problem in convolutional neural networks,” Neural Networks, vol. 106, pp. 249–
259, 2018.

[95] Datastrip, About Us: History, 2003. [Online]. Available: https://web.archive.org/
web/20030624032546/http://www.datastrip.com:80/English/history.asp
(visited on 10/30/2018).

[96] ——, Readers. [Online]. Available: https://web.archive.org/web/19970110194617/
http://www.datastrip.com:80/readers.htm (visited on 10/30/2018).

[97] ——, FAQ: What is the difference between 2DSuperscript and Datastrip2D bar codes?
2003. [Online]. Available: https://web.archive.org/web/20030620205648/http:
//www.datastrip.com:80/English/faqs.asp (visited on 10/30/2018).

[98] ——, Products, 2002. [Online]. Available: https://web.archive.org/web/20030204114404/
http://www.datastrip.com:80/products.htm (visited on 10/30/2018).

[99] ——, Continental Trust Bank Implements Biometric Savings Card Application, 2000.
[Online]. Available: https://web.archive.org/web/20010419021332/http:
//www.datastrip.com:80/PR-ContTrustBank.htm (visited on 10/30/2018).

[100] ——, Datastrip Provides ID Card System For Sri Lanka’s International Airport, 2001.
[Online]. Available: https://web.archive.org/web/20021204152134/http:
//www.datastrip.com:80/pr-srilanka.htm (visited on 10/30/2018).

[101] ——, Datastrip’s 2D Superscript Bar Code System Integrated with Synercard’s Asure
Photo Card Software To Permit Addition of Biometrics, 2002. [Online]. Available: https:
//web.archive.org/web/20021204150310/http://www.datastrip.com:80/pr-
synercard.htm (visited on 10/30/2018).

[102] ——, Cambodia National ID: High density printed code provides economic solution for
photo-based application, 1998. [Online]. Available: https://web.archive.org/web/
20021219024913/http://www.datastrip.com:80/casestudies/pr-cambodia.
htm (visited on 10/30/2018).

[103] ——, Diamond Bank Implements Biometric ID Card Security System, 2002. [Online].
Available: https : / / web . archive . org / web / 20021219024817 / http : / / www .
datastrip.com:80/casestudies/pr-diamond_savings.htm (visited on 10/30/2018).

[104] ——, APEC Business Travel Card Program For Hong Kong, 2002. [Online]. Available:
https://web.archive.org/web/20021219030012/http://www.datastrip.com:
80/casestudies/pr-hongkong.htm (visited on 10/30/2018).

[105] ——, Yemen Chooses Innovative Printed Code For National ID Cards, 2002. [Online].
Available: https : / / web . archive . org / web / 20021219025153 / http : / / www .
datastrip.com:80/casestudies/pr-yemen.htm (visited on 10/30/2018).

[106] ——, Datastrip’s Printed Code Chosen For Zimbabwe’s Social Security ID Card, 2002.
[Online]. Available: https://web.archive.org/web/20021219031025/http://
www.datastrip.com:80/casestudies/pr-zimbabwe.htm (visited on 10/30/2018).

[107] ——, Safe Student ID Cards, 2002. [Online]. Available: https://web.archive.org/
web/20060314194302/http://www.datastrip.com/english/news_detail.asp?
id=101 (visited on 10/30/2018).

80

Bibliography

[108] ——, LISCR Unveils World’s First Biometric Seafarer’s Identity Card, 2003. [Online].
Available: https : / / web . archive . org / web / 20060314194552 / http : / / www .
datastrip.com/english/news_detail.asp?id=165 (visited on 10/30/2018).

[109] ——, Datastrip’s 2D Bar Code Selected for Colombia’s San Andrés Island New Res-
ident ID Cards, 2003. [Online]. Available: https : / / web . archive . org / web /
20060314194327/http://www.datastrip.com/english/news_detail.asp?
id=256 (visited on 10/30/2018).

[110] E. P. Gerety, R. A. Strempski, and S. G. Sardi, Two-dimensional printed code for stor-
ing biometric information and integrated off-line apparatus for reading same, US Patent
6,560,741, 2003.

[111] P. E. Black, Gray code, 2005.

[112] A. B. Raj, Bar codes: technology and implementation. Tata McGraw-Hill Publishing
Company, 2001.

[113] Datastrip, Products: 2DSuperscript, 2003. [Online]. Available: https://web.archive.
org/web/20030410123442/http://www.datastrip.com:80/english/products_
detail.asp?id=90 (visited on 10/30/2018).

[114] ——, Smart Media Innovations (SMI) to aquire Datastrip assets, 2011. [Online]. Avail-
able: https://web.archive.org/web/20130831222730/http://datastripsystems.
com/press/BusinessTransfer.html (visited on 10/30/2018).

[115] Cauzin Systems, The Art of Stripping, 1986. [Online]. Available: https://archive.
org/stream/CauzinSoftstrip/The%20Art%20Of%20Stripping#page/n5 (visited
on 10/30/2018).

81

List of Figures

1.1 Cauzin Softstrip Advertisement . 4

2.1 Single Layer Perceptron (SLP) . 8
2.2 Fully connected neural network with two hidden layers. 8
2.3 Activation Functions . 9
2.4 Two 3x3 kernels. The right kernel is a flipped representation of the left kernel. 10
2.5 Example of the convolution operation. 11
2.6 Convolution for Edge Detection . 11
2.7 Dilation and Erosion . 14
2.8 Convex Hull . 15
2.9 Thresholding Example . 16
2.10 Edges . 17
2.11 Sobel Kernel . 17
2.12 XY and Parameter Space . 19

3.1 One-Dimensional Bar Codes . 21
3.2 Two-Dimensional Bar Codes . 22
3.3 PDF-417 . 23
3.4 PDF-417 Recognition . 24
3.5 Softstrip Structure . 25
3.6 Possible Dibit Values . 25
3.7 Row Example . 26
3.8 Generated Rows . 30
3.9 Scanning Distortions . 31
3.10 Density Example . 31
3.11 StripWare Artifacts . 31
3.12 Animated Algorithms Artifacts . 32
3.13 Cauzin Softstrip Application Notes and Marketing Material Artifacts . . . 32
3.14 Magazine Artifacts . 33

4.1 Databar Practice Sheet . 35
4.2 Windowing Example . 37
4.3 Windowing on the Quicksort Softstrip . 37

5.1 Damaged Horizontal Synchronization Section 40
5.2 Quiet Zone Transition . 41
5.3 Rack . 42
5.4 Color Area Detection . 43
5.5 Dibits . 44
5.6 Pipe and Filter Architecture . 45

6.1 Image Preprocessing . 50
6.2 Boundary Detection . 50
6.3 Algorithmic Row Extraction . 51
6.4 Row Extraction Training . 54

83

6.5 Damaged Dibits . 55
6.6 Shifted Row . 55
6.7 Algorithmic Row Decoding . 56

8.1 Datastrip . 71

List of Tables

3.1 Data fields . 28

6.1 Row Extraction Class Distribution . 52
6.2 Row Extraction Class Distribution After Preprocessing 53
6.3 Row Decoding Training Samples . 57

7.1 Decoding Methods . 62
7.2 Decodable Softstrips . 62
7.3 Comparison of Cartesian Product and Most Common Strategy 63
7.4 DS1 Runtime Performance . 64
7.5 DS2 Runtime Performance . 64
7.6 DS3 Runtime Performance . 65
7.7 DS4 Runtime Performance . 65
7.8 DS5 Runtime Performance . 65
7.9 Image Resolution Test . 66

8.1 Gray Code . 71

A.1 Strip Types . 89
A.2 Operating System . 89
A.3 Cauzin File Type . 89
A.4 Operating System File Type . 90

Listings

6.1 Row Extraction CNN Architecture . 53
6.2 Simple CNN Architecture . 57
6.3 Complex CNN Architecutre . 58

7.1 Decoded Text File With Invalid Checksum 61
7.2 Decoded Text File With Valid Checksum . 61

84

Abbreviations

LSB Least Significant Byte

MSB Most Significant Byte

CNN Convolutional neural network

MLP MultiLayer perceptron

ReLU Rectified Linear Unit

CRC Cyclic Redundancy Check

QR Quick Response

UPC Universal Product Code

LED Light Emitting Diode

PC Personal Computer

OSCAR Optical Scanning Reader

ROI Region of Interest

DPI Dots per inch

MLP Multilayer perceptron

RNN Recurrent neural network

SLP Single Layer Perceptron

EAN European Article Number

GUI Graphical User Interface

85

Appendix

87

A File Information

This appendix provides more details about the file information encoded in the Cauzin
Softstrip which are described in table 3.1 and are defined in the Cauzin Reader Spec [77].
Table A.1 shows the different Softstrip types. However, only the standard Softstrip is
defined. The possible operating system with their hexadecimal values are described in
table A.2 and the corresponding file types are shown in table A.4. The general file types
are listed in table A.3.

Hexadecimal Value Description

0x00 Standard Softstrip data strip
0x01 Special key strip (Not implemented)

0x02 - 0xFF Other formats (Not implemented)

Table A.1: Strip Types [77]

Hexadecimal Value Description

0x00 Cauzin Generic Strip Format
0x01 COLOS (Cauzin’s Own Little Operating System)
0x10 Apple DOS 3.3
0x11 Apple DOS ProDOS
0x12 Apple CPM 2.0
0x14 PC/MS-DOS (2.1)
0x15 Macintosh - MacBinary
0x20 Reserved (Interpreted as PC/MS-DOS)

Table A.2: Operating System [77]

Hexadecimal Value Description

0x00 Unknown (text file if the operating system is Cauzin)
0x01 Text file
0x02 Binary, executable file
0x04 BASIC
0x10 Cauzin’s compressing technique (not implemented)

Table A.3: Cauzin File Type [77]

89

A File Information

Operating System Hexadecimal Value Description

Apple DOS 3.3

0x00 Text file
0x01 Integer BASIC file
0x02 Applesoft BASIC file
0x04 Binary file
0x10 Relocatable object module file
0x20 A type file (not supported)
0x40 B type file (not supported)

Apple ProDos

0x04 ASCII text file
0x06 General binary file
0xFA Integer BASIC file
0xFC Applesoft BASIC file
0xFE Relocatable object module file
0xFF System file

IBM PC-DOS/MS-DOS
0x00 Executable DOS file
0x01 Any other DOS file

Macintosh
0x00 MacBinary
0x01 Data fork text file document, non MacBinary

Table A.4: Operating System File Type [77]

90

B Contents of the attached CD

The following content is included on the CD:

• Source code of the digital Softstrip reader

• Installation guide

• Example Softstrips

• CNN models

• CNN training scripts

91

Kolophon

Dieses Dokument wurde mit der LATEX-Vorlage für Abschlussarbeiten an der htw saar im
Bereich Informatik/Mechatronik-Sensortechnik erstellt (Version 2.1). Die Vorlage wurde
von Yves Hary und André Miede entwickelt (mit freundlicher Unterstützung von Thomas
Kretschmer, Helmut G. Folz und Martina Lehser). Daten: (F)10.95 – (B)426.79135pt –
(H)688.5567pt

