
STL SYSTEMTECHNIKLABOR

Fast Self-Stabilizing Broadcast with 1 Bit

Niko Kleer

Technical Report – STL-TR-2017-04 – ISSN 2364-7167

stl.htwsaar.de

https://stl.htwsaar.de/
https://stl.htwsaar.de

Technische Berichte des Systemtechniklabors (STL) der htw saar
Technical Reports of the System Technology Lab (STL) at htw saar
ISSN 2364-7167

Niko Kleer: Fast Self-Stabilizing Broadcast with 1 Bit
Technical report id: STL-TR-2017-04

First published: October 2017
Last revision: October 2017
Internal review: Klaus Berberich, Emanuele Natale

For the most recent version of this report see: https://stl.htwsaar.de/

Title image source: Flavio Takemoto (flaivoloka), http://www.freeimages.com/photo/1160571

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. http://creativecommons.org/licenses/by-nc-nd/4.0/

htw saar – Hochschule für Technik und Wirtschaft des Saarlandes (University of Applied Sciences)
Fakultät für Ingenieurwissenschaften (School of Engineering)
STL – Systemtechniklabor (System Technology Lab)
Prof. Dr.-Ing. André Miede (andre.miede@htwsaar.de)
Goebenstraße 40
66117 Saarbrücken, Germany
https://stl.htwsaar.de

https://stl.htwsaar.de/
http://www.freeimages.com/photo/1160571
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://stl.htwsaar.de

FA S T S E L F - S TA B I L I Z I N G B R O A D C A S T W I T H 1 B I T

niko kleer

A thesis submitted for the degree of Bachelor of Science

in

Applied Computer Science

at

University of Applied Sciences, Saarbrücken

Hochschule für Technik und Wirtschaft des Saarlandes

September 2017

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

D E C L A R AT I O N

I hereby declare that this thesis has not been previously accepted in
substance of any degree and is not being concurrently submitted in
candidature for any degree. I state that this thesis is the result of my
own independent work/investigation, except where otherwise stated.

Saarbrücken, September 2017

Niko Kleer

[November 7, 2017 at 14:12 – classicthesis version 4.2]

Niko Kleer: Fast Self-Stabilizing Broadcast with 1 Bit, Bachelor of Sci-
ence, © September 2017

supervisors:
Prof. Dr. Klaus Berberich
Dr. Emanuele Natale

location:
Saarbrücken

submission:
September 2017

[November 7, 2017 at 14:12 – classicthesis version 4.2]

A B S T R A C T

Although information propagation as well as self-stabilization repre-
sent fundamental problems in Computer Science, there exist only a
few time-efficient algorithms for solving the self-stabilizing broadcast
problem while restricting an agent to transmit small-sized messages.
This thesis provides an extensive analysis of an information propaga-
tion protocol for solving the broadcast problem in a self-stabilizing
context by transmitting 1-bit messages only. A theoretical investiga-
tion of the protocol yields a lower bound of Ω(logn) on the conver-
gence time while an experimental analysis via the randomized search
heuristic simulated annealing shows the protocol’s capabilities to self-
stabilize from any arbitrary configuration in O(logn) rounds.

Z U S A M M E N FA S S U N G

Obwohl Informationsverbreitung und Selbststabilisierung fundamen-
tale Probleme der Informatik darstellen, existiert nur eine geringe
Anzahl schneller Algorithmen zum Lösen des selbst-stabilisierenden
Broadcast-Problems, die einen Vermittler auf die Übertragung klei-
ner Nachrichten beschränken. Diese Arbeit analysiert einen Algorith-
mus, der das Broadcast-Problem unter der Voraussetzung, dass jeder
Vermittler lediglich über 1-Bit Nachrichten kommunizieren darf, in
einem selbst-stabilisierenden Kontext löst. Eine theoretische Untersu-
chung bezüglich der Konvergenz resultiert in einer unteren Schran-
ke von Ω(logn) während eine experimentelle Analyse mit Hilfe des
heuristischen Approximationsverfahrens simulierte Abkühlung zeigt,
dass der Algorithmus jede beliebige Startkonfiguration in O(logn)
Runden selbst-stabilisieren kann.

v

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [27]

A C K N O W L E D G M E N T S

I would like to start by expressing my sincere appreciation to my ad-
visor Dr. Emanuele Natale who gave me the opportunity to write this
thesis. His patience, encouragement and knowledge have truly been
an enrichment to my motivation and the result of this thesis.

I acknowledge my gratitude to my advisor Prof. Klaus Berberich
for his continous support throughout the course of this thesis. I am
thankful for his guidance and advice in the scientific field.

My thanks also goes to the department for Databases and Infor-
mation Systems of the Max Planck Institute for Informatics in Saar-
brücken for providing me with resources to work on my thesis.

Special recognition to Martin Feick whose support has always been
a considerable motivation in overcoming demanding challenges dur-
ing my studies. I particularly thank him for the fun we had while
spending our time on searching and fixing problems together. Thanks
to Marek Kohn for his mathematical knowledge and problem solving
skills that I was able to extend my knowledge with. I also thank Mar-
ius Backes for being a nice companion whenever I was taking the
train over the last three years.

vii

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

C O N T E N T S

i introduction 1
1 inspiration biology 3

1.1 The Broadcast problem 4
1.2 Self-Stabilizing Broadcast 5
1.3 Majority Consensus 5
1.4 Results 6

ii related work 7
2 related work 9

2.1 The Broadcast Problem 9
2.2 Self-Stabilization 10
2.3 Self-Stabilizing Broadcast 10
2.4 Majority Consensous 10

iii problem statement 11
3 the bsf-protocol 13

3.1 Thesis Objective 14

iv theoretical insights 15
4 on the convergence of the algorithm 17

4.1 Investigating a Lower Bound 18

v implementation 21
5 requirements 23

5.1 Software Architecture 23
5.2 Implementing the BSF-Protocol 24

5.2.1 The Node Class 24
5.2.2 Appropriately Implementing the Graph Class 25
5.2.3 Preparing the GraphController Class 29

5.3 Simulated Annealing 29
5.3.1 Generating Neighbor Configurations 31
5.3.2 Simulation Implementation 33

5.4 Multi-threading 34
5.4.1 Multi-threaded bsf-algorithm 36
5.4.2 Concurrent Configuration Adjustments 37
5.4.3 Achieving a Multi-threaded Mean Calculation 38
5.4.4 Running each Simulation in a Thread 40

vi experiments 43
6 running the algorithm 45

6.1 Finding Appropriate Parameters 45
6.1.1 Optimally Choosing l and k 46
6.1.2 Temperature Determination 47
6.1.3 Cooling Schedules 49
6.1.4 Multi-Threading Strategies Evaluation 51

6.2 Search Space Optimizations 53

ix

[November 7, 2017 at 14:12 – classicthesis version 4.2]

x contents

6.2.1 Informed vs. Uninformed Populations 53
6.2.2 The Impact of State Shifting 55
6.2.3 Boost and Freezing Duration Based Correlations 56

6.3 Results 57

vii conclusion 59
7 conclusion 61

bibliography 63

[November 7, 2017 at 14:12 – classicthesis version 4.2]

Part I

I N T R O D U C T I O N

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

1
I N S P I R AT I O N B I O L O G Y

Asking a computer scientist about the origin of many well-known
algorithms most likely leads to answers like Edsger Dijkstra who in-
vented the most popular shortest path algorithm [8], Joseph Kruskal
who presented his greedy algorithm for finding a minimum spanning
tree in a connected weighted graph [29], Thomas Bayes whose theo-
rem considerably contributed to several areas in Computer Science
[34] or John von Neumann who introduced the popular sorting algo-
rithm merge sort [28]. Nevertheless, several computational algorithms
were initially inspired by a factor that most computer scientists either
would not think of in the very first moment or do not know about at
all: biological systems.
These systems have been able to considerably inspire the conception
of computational algorithms in different fields of Computer Science.
For example, a concept used in machine learning that has steadily
been gaining popularity are neural networks [20, 21]. They underlie
fundamental neuroscientific knowledge which is why they were first
investigated by neuroscientists and biologists. Genetic algorithms rep-
resent a heuristic for finding solutions to optimization problems that
was initally inspired by biology as well [18]. Furthermore, by study-
ing the behavior of insects, computer scientists have been able to learn
about search optimization [6] as well as understanding network dy-
namics [13]. There are numerous reasons as to why the investigation
of biological systems, to improve the effectiveness of computational
algorithms, makes sense. In fact, computational as well as biological
systems show quite a few similarities when it comes to their charac-
teristics and requirements [35].

• Biological systems are distributed as they consist of several bi-
ological organisms interacting with each other. Distributed sys-
tems in Computer Science basically need to be able to do the
exact same thing by handling heterogeneity. This means that
the system’s design needs to consider different hardware archi-
tectures, operating systems and programming languages.

• Being able to resist failures and attacks is just as important in
biological as in computational systems. In a biological context,
a term frequently used describing a system’s ability to retain
its functionality is robustness [26]. Computer Science also aims
to design fault tolerant systems, especially when operated by
humans.

• Another factor is communication. Multiple homo- or heteroge-
nous systems that have their internal software components in-
teract with each other are far from being rarities nowadays. En-
abling this way of communication mostly increases the usability

3

[November 7, 2017 at 14:12 – classicthesis version 4.2]

4 inspiration biology

of those systems in many cases. This improvement especially
applies if communication between humans becomes possible.
Networks are used to allow this kind of interaction in the first
place. Biological systems make use of networks for communica-
tion purposes as well.

• A core principle in software engineering is modularity. Re-using
code or certain components e. g. classes in object oriented pro-
gramming (OOP) is mostly done by implementing design pat-
terns as they guarantee a clean reutilisation [15]. Clean means
that the software’s maintainability, extensibility and readability
does not suffer from that reutilisation. In fact, the opposite is
the case as correctly implemented design patterns help to grow
an architecture in an appropriate way, especially with respect to
large software. Modularity can also be observed when looking
at biological networks. They consist of independent modules
that are reused as well. Patterns that are observed to be reused
in these networks are called network motifs [24].

• Probabilistic algorithms in Computer Science exploit random-
ness to solve certain problems. Processes in biological systems
are also sometimes stochastically influenced. This can be shown
at the example of gene cells that have to constantly adapt to
changing environments [22].

The similarities listed above clearly point out why the understand-
ing of biological systems and processes has already contributed to
several fields in Computer Science.
This chapter is divided into the following sections: we start by in-
troducing a fundamental problem that is not only of considerable
importance to Computer Science but can be observed in numerous
biological settings as well, namely the broadcast problem. Section 1.2
continues by introducing the condition of self-stabilization which is
a fault-tolerance concept in distributed computing for providing ro-
bustness in a system. This leads us to the self-stabilizing broadcast
problem that emerges from combining both previously mentioned
fundamental problems. Finally, Section 1.3 elaborates on the matter
of majority consensus that enables decision-making in several biolog-
ical settings as well as distributed computing under the influence of
faulty processes. Consensus is not only of significance with respect to
the protocol studied in this thesis but also commonly used for achiev-
ing system reliability in distributed computing.

1.1 the broadcast problem

Computer networks are commonly known for using broadcasts to
propagate data to all agents in the network. This is not only a con-
cept used in Computer Science as there are scenarios related to the
animal kingdom where propagating information plays a significant
role. Ants interacting in theirs nest to recruit other ants to look for

[November 7, 2017 at 14:12 – classicthesis version 4.2]

1.2 self-stabilizing broadcast 5

food is only one example of a concrete broadcast in a biological set-
ting [38]. Obviously, scenarios like that seem to be very noisy and
highly unpredictable. The field of distributed computing has already
introduced numerous communication models for investigating these
scenarios computationally. The so-called uniform pull model, later re-
ferred as PULL (see Definition 4.1 in Chapter 4), representing only
one of many options, is going to be the communication model consid-
ered in this thesis for tackling the broadcast problem. In this model
of communication, time proceeds in discrete rounds and an informa-
tion is supposed to spread among a population of n agents. In each
round, each agent observes and copies the information from another
uniformly at random chosen agent (including itself).

1.2 self-stabilizing broadcast

A condition arising considerable difficulties when solving the broad-
cast problem is self-stabilization. When solving this problem in a self-
stabilizing context, the process has to converge to a valid state from
any initial configuration [9]. Even though this is the case, note that an
initial configuration must not ignore the definition of the broadcast
problem (see Definition 4.2 in Chapter 4) which means that there has
to be exactly one source in the initial configuration. Self-stabilization
still leads to a decisive issue as an agent can never be sure about
whether its current information matches the information propagated
by the source. Consequently, an initial configuration that leads to the
wrong information to be propagated is unable to converge. Ignor-
ing the self-stabilization constraint, Karp et al. [23] have shown that
the problem can be solved in O(logn) rounds with high probability
by using a certainty bit indicating whether an agent’s information
corresponds to the information propagated by the source. Since self-
stabilization is an essential requirement in our case, we are looking
for an algorithm that solves the problem in a self-stabilizing context.

1.3 majority consensus

In numerous biological settings, including the example given in Sec-
tion 1.1, animals and other biological individuals have to come to a
decision. Another typical biological setting where this kind of deci-
sion making plays a significant role can be observed with respect to
fish. They have to quickly reach consensous in their group to agree
on what to do when attacked by a predator [40]. The algorithm that
we propose in Chapter 3 uses a majority consensus protocol as a sub-
procedure for solving the self-stabilizing broadcast problem. This pro-
tocol proceeds in the following way: each agent has an internal out-
put bit that can be observed by an arbitrary number of agents. In each
round of the process, each agent observes the output bit provided by
two agents and changes its output bit corresponding to the majority
of bits observed by the agent.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

6 inspiration biology

1.4 results

This thesis’ main contribution represents a comprehensive analysis re-
garding the self-stabilizing property of a concrete protocol for solving
the self-stabilizing broadcast problem. The protocol that we analyze is
of special interest as it restricts agents to communicate via 1-bit mes-
sages only. First, we theoretically investigate rigorous bounds regard-
ing the convergence time of the protocol. We do so by moving our fo-
cus to the broadcast problem and prove a lower bound ofΩ(logn) on
the convergence time of the problem. After that, we provide an exten-
sive experimental analysis for showing that our protocol for solving
the self-stabilizing broadcast problem converges in O(logn) rounds.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

Part II

R E L AT E D W O R K

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

2
R E L AT E D W O R K

In this chapter, we will take a look at the most important related work
regarding the topic of this thesis. The first section will present sev-
eral communication models that have previously been investigated
for solving the broadcast problem. After talking about the essentials
concerning the concept of self-stabilization in Section 2.2, we will pro-
ceed by discussing an aspect that represents a combination of the
fundamental problems mentioned before, the self-stabilizing broad-
cast. Finally, majority consensus and its relation to the self-stabilizing
broadcast will be subject of Section 2.4.

2.1 the broadcast problem

The broadcast problem, sometimes referred as rumor spreading or
information dissemination problem, being one of many fundamental
problems in computer science, has already been studied extensively.
There are several communication models similar to PULL (see Defini-
tion 4.1 in Chapter 4) that have already been considered and analyzed
for solving the broadcast problem. A model whose computation effi-
ciency on unknown graph topologies has been investigated is the
GOSSIP model [4] of communication. In this model, information is
propagated by allowing each node to establish at most one bidirec-
tional communication with another neighbor in each round. As this
model aims to solve the broadcast problem on any graph topology,
an additional algorithm is required for choosing a node to communi-
cate with. A different way of communication can be observed in the
LOCAL as well as the CONGEST model [37]. Both of these models
enable each node to propagate its information to all of its neighbors
in each round. In contrast to the GOSSIP model, each node may arbi-
trarily manipulate the data propagated. Note that only the CONGEST

model restricts the message size that can be transmitted by a node to
k-bits where k is usually chosen to be logn. Another similar model
investigated by Karp et al. [23] is the random phone call model where
each agent u chooses a communication partner v in each round uni-
formly at random. This model also considers bidirectional communi-
cation in which an information is pushed or (not exclusively) pulled,
depending on the state of an agent. Since the model assumes agents
to be chosen uniformly at random, it can be referrerd to as a uniform
GOSSIP model. The aforementioned as well as many other communi-
cation models [14] and well-studied algorithms [7, 10] share the fact
that they use randomization and limited communication for provid-
ing simplicity and robustness while solving the broadcast problem.

9

[November 7, 2017 at 14:12 – classicthesis version 4.2]

10 related work

2.2 self-stabilization

The most important contribution regarding the self-stabilizing prop-
erty that requires a system to be in a valid state at any time was
published by Edsger Dijkstra [9]. His paper contributed to the area
of distributed computing by presenting the first system independent
self-stabilizing algorithms. His research effort was later recongnized
by Leslie Lamport who emphasized Dijksta’s work in 1985 [32]. Even
more improvements such as error detection through local checking
[41] as well as time-adaptive protocols [30] followed. Another related
topic to self-stabilization is superstabilization [12]. In contrast to self-
stabilization, superstabilizing algorithms are capable of recovering
from changes in the network topology.

2.3 self-stabilizing broadcast

By combining the fundamental problems previously discussed, we
get a problem that has steadily been gaining attention over the last
few years, namely the self-stabilizing broadcast. There have already
been theoretical investigations for each communication model in Sec-
tion 2.1 regarding the broadcast problem. Consequently, lower as well
as upper bounds on the convergence resulted from those investiga-
tions. Unfortunately, the self-stabilization condition arises several dif-
ficulties such as making sure that agents are unable to lead the system
into an invalid state by propagating wrong information. That is why
protocols solving the broadcast problem in a self-stabilizing context
mostly rely on synchronization measures [31]. In contrast to previ-
ously investigated protocols, Boczkowski et al. [3] present the first
algorithm that focuses on restricting the message size to 3 bits. This
thesis aims to minimize the message size even further and investi-
gates an algorithm that uses 1-bit messages only.

2.4 majority consensous

Distributed as well as multi-agent systems have to agree on data for
making a decision in many cases. However, those systems are vulner-
able to failures such as crash, timing, omission or Byzantine failures
[33]. Since achieving system reliability is a crucial task in distributed
computing, consensus represents another fundamental problem in
computer science that has already enjoyed comprehensive research.
Consensus protocols have to be fault-tolerant and aim to be fast in
terms of running time [1, 2]. Minimizing message traffic plays a sig-
nificant role as well which is why the majority consensus protocol
that is used as sub-procedure for solving the self-stabilizing broad-
cast problem in this thesis focuses on transmitting 1-bit messages.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

Part III

P R O B L E M S TAT E M E N T

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

3
T H E B S F - P R O T O C O L

An algorithm that solves the self-stabilizing broadcast problem should
fulfill three requirements.

• The algorithm should be as simple as possible. This can not be
measured since simplicity is usually based on common sense.
Consequently, there should not be the need for a measure to
decide whether an algorithm is simple or not.

• Runtime plays a significant role. In other words: the amount of
time needed by the algorithm to converge to a valid state. We
can do this by measuring an algorithm’s runtime complexity.

• The message size transmitted by the algorithm in relation to
each agent should be as small as possible.The reason for this is
directly related to computer networks. Transmitting large mes-
sages is normally done by splitting the data into packets. A
fundamental problem that applies in biological settings as well
is the following: how can one prevent data loss during the trans-
mission as there has to be a confirmation on whether each part
of the message reached its destination. That is why an algorithm
should restrict agents to transfer small messages only.

A concrete candidate for solving the self-stabilizing broadcast prob-
lem is the Boosting-Susceptible-Frozen (BSF) protocol provided by [3].
The protocol satisfies each requirement mentioned above. Moreover,
it defines the following three states and includes the parameters l and
k.

• Agents in the boosting state simply perform the majority con-
sensus rule. Moreover, each agent has an individual counter
T that keeps track of the number of rounds an agent has not
changed its opinion. If an agent has observed only agents with
the same opinion b for l rounds, the agent becomes susceptible
to 1− b.

• Agents susceptible to b change their opinion as soon as they
observe an agent with opinion b. This turns them into Frozen-b
agents.

• Frozen-b agents keep their opinion b for k rounds. After this
duration, they restart boosting.

Pseudocode for applying the algorithm just presented on a set of
n agents where ak represents the agent currently observed by the
algorithm is given below in Algorithm 1.

13

[November 7, 2017 at 14:12 – classicthesis version 4.2]

14 the bsf-protocol

Algorithm 1 BSF-Protocol

1: procedure BSF(l,k)
2: if ak is boosting then
3: observe two agents
4: if both agents agree with ak on the same opinion then
5: Tb ← Tb + 1

6: if Tb > l then
7: ak becomes susceptible to 1− b
8: Tb ← 0

9: end if
10: else if both agents disagree with ak then
11: ak’s opinion changes to 1− b
12: else
13: Tb ← 0

14: end if
15: else if ak is susceptible then
16: observe one agent
17: if the agent disagrees then
18: ak’s opinion changes to 1− b and ak freezes
19: end if
20: else if ak is frozen then
21: Tf ← Tf + 1

22: if Tf > k then
23: ak starts boosting
24: Tf ← 0

25: end if
26: end if
27: end procedure

3.1 thesis objective

The objective of this bachelor thesis is divided into a theoretical as
well as an experimental part.

1. Theoretical part: The first part of this thesis investigates a lower
bound regarding the convergence time of the algorithm pre-
sented in this chapter.

2. Experimental part: Completing this thesis, the experimental part
includes implementing an efficient framework that allows to
test the self-stabilizing property of the BFS-protocol by search-
ing for initial configurations that give the algorithm a hard time
to converge. The programming language C++ is used to imple-
ment the framework while searching for hard initial configu-
rations will be done by implementing the randomized search
heuristic simulated annealing. By doing so, we want to show
that the algorithm takes no longer than O(logn) rounds to con-
verge to a valid state.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

Part IV

T H E O R E T I C A L I N S I G H T S

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

4
O N T H E C O N V E R G E N C E O F T H E A L G O R I T H M

From a theoretical point of view, we want to analyze the convergence
of the previously presented candidate algorithm. Therefore, we are
interested in finding bounds concerning the minimal as well as the
maximal number of rounds the algorithm needs to converge. We can
distinguish between two scenarios: a configuration either favors the
convergence of the algorithm or not. These scenarios are subsequently
explained.

• Optimistic: Initial configurations that favor the convergence of
the algorithm are expected to converge to a valid state right
away.

• Pessimistic: On the other hand, when starting in an unfavor-
able configuration, the population is expected to diverge in such
a way that the entire population disagrees with the source’s
opinion at some point. While the population keeps on boosting,
all agents become susceptible to the opinion propagated by the
source after some time. Agents taking on that opinion become
frozen which increases the probability for other agents to freeze
and accelerates the spreading process with every single agent.
This behavior should eventually lead to a quickly converging
algorithm.

However, before we can give any mathematical details, the communi-
cation model [11] needs to be defined.

Definition 4.1. The uniform pull model, denoted as PULL, defines a model
of communication on a population of n agents in which time proceeds in
discrete rounds. There is a specific part of each agent’s memory that will be
referred as the observable part. In each round, each agent u observes one
uniformly at random chosen agent v from the entire population, including
herself. Observing an agent v means that u may look at the observable part
of v’s memory. In case there are multiple agents u1, ...,uk with 1 < k 6 n

observing an agent v in the same round, they observe the exact same memory.

In this chapter we aim to determine a lower bound concerning the
convergence time of the bsf-algorithm. Since analytically investigat-
ing the algorithm is rather complicated as we would be required to
consider any possible scenario, we will continue by considering an-
other problem that resembles the pessimistic scenario described at the
beginning of this chapter, namely the broadcast problem. We will con-
sider this more general problem for providing a lower bound show-
ing that the algorithm requires logarithmic time to converge. The rea-
son of the broadcast problem being relevant in relation to the conver-
gence of the bsf-algorithm is the following: Consider a population
in which there are n2 agents agreeing as well as disagreeing with the

17

[November 7, 2017 at 14:12 – classicthesis version 4.2]

18 on the convergence of the algorithm

source’s opinion. In case this population fails to agree on the opinion
propagated by the source, all agents will disagree at some point. Fol-
lowing the bsf-algorithm, this will lead all agents to become suscep-
tible to the source’s opinion. Finally, all of them will freeze. Choosing
the parameter k large enough results in all agents to be frozen at the
same time. Since the broadcast problem is the problem of showing
the amount of time required for an information to spread among a
population, the configuration just described is identical to the start-
ing configuration required by the broadcast problem. Therefore, this
problem can be considered to be a likely case during the execution
of the bsf-algorithm. We define the broadcast problem in Definition
4.2.

Definition 4.2. The following process in PULL defines the broadcast prob-
lem. At the beginning of the process, the population comprises a set of unin-
formed agents Ut = {u1,u2, ...,un} as well as an informed agent that rep-
resents the population’s source S. Whenever an uninformed agent ui ∈ Ut
observes an informed one, it turns informed. Furthermore, an informed agent
keeps on being informed meaning that she is not influenced by future obser-
vations. The process has not converged and keeps on proceeding as long as
Ut 6= ∅.

In contrast to the algorithm, an analytical investigation of the broad-
cast problem is much easier as we only concentrate on a specific be-
havior instead of any possible case. Consequently, an analysis of the
broadcast problem allows gaining insights on the convergence of the
bsf-algorithm.

4.1 investigating a lower bound

Theorem 4.1. The expected convergence time of the broadcast problem is
Ω(logn).

Proof. In order to prove, we assume that each uninformed agent has
opinion 0. Definition 4.2 implies that the probability for any agent
ui ∈ Ut to take on S opinion in the first round equals 1n since S is the
only informed agent. Moreover, an informed agent is not capable of
taking on opinion 0. Let Yt(ui) denote a boolean random variable that
takes on value 1 if the agent ui sees an informed agent in round t. By
considering the aforementioned facts, we can say that the expected
value for any ui ∈ Ut to turn informed in round one is given by

E[Y1(ui)] = P(Y1(ui) = 1) + 0 · P(Y1(ui) = 0) (1)

=
1

n
.

Let Xt represent the fraction of agents that is informed in round t. By
using Equation 1, we can determine the expected fraction of agents
that turns informed in round one with respect to the entire popula-
tion. Since E[X1] has to consider each uninformed agent’s probability
P(Y1(ui) = 1) ∀ui ∈ Ut, we have to sum up the probabilities and

[November 7, 2017 at 14:12 – classicthesis version 4.2]

4.1 investigating a lower bound 19

divide the result by the number of agents leading to the following
equation:

E[X1] = E[
1

n

∑

ui∈Ut
Y1(ui)] (2)

=
1

n

∑

ui∈Ut
E[Y1(ui)]

=
1

n

∑

ui∈Ut
P(Y1(ui) = 1)

=
1

n

∑

ui∈Ut

1

n
.

=
1

n
.

We can adapt Equation 2 to determine the expected fraction of agents
that turns informed in round t. Note that the value of E[Xt] is based
on every single round that has previously been executed. Since the
broadcast problem proceeds in discrete rounds, we can look at E[Xt]
based on the number of agents that have already been informed up
until round t−1, namely Xt−1. Therefore, we may use the conditional
expectation E[Xt|Xt−1]. This means that we need to add the number
of agents previously informed to the number that is expected to turn
informed in round t. In contrast to Equation 2, we now need to con-
sider the probabilities of all agents to turn informed based on round
t− 1. Keep in mind that the summation that considers any ui ∈ Ut
divided by n ends up being 1−Xt−1 which is why we can transform
the summation. As a result,

E[Xt|Xt−1] = Xt−1 +
1

n

∑

ui∈Ut
E[Yt(ui)|Xt−1] (3)

= Xt−1 +
1

n

∑

ui∈Ut
P(Yt(ui) = 1|Xt−1)

= Xt−1 +
1

n

∑

ui∈Ut
Xt−1

= Xt−1 +
1

n
|Ut| ·Xt−1

= Xt−1 + (1−Xt−1)Xt−1

= 2Xt−1 −X
2
t−1

can be concluded to be the expected fraction of agents turning in-
formed in round t given the information that we have from round
t− 1. By applying the law of total expectation, stating that E[Xt] =
E[E[Xt|Xt−1]], we can get an upper bound for E[Xt].

E[Xt] = E[E[Xt|Xt−1]] (4)

= E[2Xt−1 −X
2
t−1]

6 2E[Xt−1] 6 4E[Xt−2] 6 ... 6 2tE[X1]

=
2t

n
.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

20 on the convergence of the algorithm

Since the upper bound only assumes positive values, we are allowed
to use Markov’s Inequality

P(X > a) 6 E[X]

a
∀a > 0

for a real-valued positive random variable to determine a lower bound
on the probability for the broadcast problem to converge in Ω(logn).
Evaluating Markov’s Inequality for t = 1

2 logn and a = 1 leads to

P(X 1
2 logn > 1) 6 2

1
2 logn

n

6 1√
n

showing that Ω(logn) is indeed a lower bound for the convergence
time of the broadcast problem with high probability.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

Part V

I M P L E M E N TAT I O N

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

5
R E Q U I R E M E N T S

The bsf-algorithm’s implementation can be considered to be rather
simple as neither a graphical user interface nor a complex software
architecture need to be implemented. Nevertheless, there are some
basic requirements that should be taken into account.

1. Keep it simple: Just like the algorithm itself, the implementa-
tion is supposed to be kept as simple as possible. This is obvi-
ously not only a desirable aspect in this particular case but in
software development in general. There might also be cases in
which a seemingly difficult function has to be implemented. In
situations like that, implementing the first idea about solving a
problem right away often turns out to be a bad approach. How-
ever, reconsidering that idea mostly leads to finding a simpli-
fied variation. As a result, simplifying complicated procedures
helps to write code that can easily be understood, maintained
and documented.

2. Optimized runtime: Being able to investigate the algorithm’s
behavior in relation to networks with millions of agents is an-
other desirable aspect. This can not be achieved by simply us-
ing high-end hardware components like a 16-core CPU and 128
GB of RAM. To enable these large scale network investigations,
optimizing the algorithm’s runtime by keeping the amount of
unnecessary code as small as possible and implementing mecha-
nisms that accelerate its execution always have to be considered.
A mechanism frequently used to achieve runtime improvements
is multi-threading.

This chapter provides a section that covers each aspect of the imple-
mentation. The first section gives an overview on the self-stabilizing
broadcast problem’s implemented architecture. After that, we take a
more detailed look at each component’s functions and data structures.
Finishing the algorithm’s basic implementation, Section 5.3 gives more
detailed explanations on the randomized search heuristic simulated
annealing (SA). Finally, Section 5.4 elaborates on several threading ex-
amples and takes into consideration whether they are beneficial or
not.

5.1 software architecture

As previously mentioned, implementing an efficient framework to
test the self-stabilizing property of the bsf-algorithm does not re-
quire a complex software architecture. In fact, the problem can be
translated into a really simple architecture using only three major
classes, excluding Main, as shown by Figure 1.

23

[November 7, 2017 at 14:12 – classicthesis version 4.2]

24 requirements

Figure 1: Shows the implementation’s class diagram

• Node: A really simple class representing an agent in the self-
stabilizing broadcast problem where each agent belongs to ex-
actly one Graph.

• Graph: This class represents the self-stabilizing broadcast prob-
lem’s model including a population of n Nodes as well as the
bsf-algorithm. A Graph object is furthermore created by pre-
cisely one GraphController.

• GraphController: While the classes just mentioned are re-
sponsible for providing the core functionality of this framework,
a class that enables the execution of additional procedures is
needed as well. Moreover, we also want to be able to work
with the data resulting from testing the broadcast problem’s
self-stabilizing property. The most important part of this class
is therefore going to be an implementation of the randomized
search heuristic simulated annealing.

Since this section has merely introduced the application’s compo-
nents superficially, the next section gives more detailed explanations
on how these classes are implemented.

5.2 implementing the bsf-protocol

Each of the presented classes implements properties or certain data
structures to manage their data. This section takes a closer look at
these implementations and gives explanations as to why specific pro-
cedures have been chosen to be implemented as they are.

5.2.1 The Node Class

Being able to implement this class appropriately requires recalling
the bsf-algorithm described in Chapter 3. First off, a Node’s prop-
erties include an opinion as well as state that corresponds to the
BSF-protocol. Furthermore, a Node needs to keep track of how many
rounds it has already been boosting or frozen. Besides that, a Node

[November 7, 2017 at 14:12 – classicthesis version 4.2]

5.2 implementing the bsf-protocol 25

also needs to be able to observe two agents as implied by the majority
consensus protocol. The opinion and individual counters Tb and Tf
are rather small numbers which is why using an integer is absolutely
sufficient. Using a char for storing a Node’s state is reasonable as it
improves code readability in contrast to a different data type. Finally,
Nodes currently observed are obviously pointers. For the purpose of
simplicity, Table 1 lists the aforementioned properties.

Table 1: Lists and describes a Node’s properties

Property Datatype Description

state char There are three different possibili-
ties indicating a Node’s state:
b: boosting
s: susceptible
f: frozen

opinion integer A binary property that can be ei-
ther 0 or 1

boostCounter integer Counts how many rounds a Node
has already been boosting

frozenCounter integer Counts how many rounds a Node
has already been frozen

firstNeighbour Node* Represents the first Node currently
observed

secondNeighbour Node* Represents the second Node cur-
rently observed

This class does not need to provide any substantial functionalities
as the Graph class takes care of that part.

5.2.2 Appropriately Implementing the Graph Class

The Graph class is supposed to provide the core functionalities for
executing computational experiments. Before we take a closer look at
the implementation, let us first consider how a Graph is commonly
implemented.

• Adjacency List: A very common approach to implement a Graph
includes using an adjacency list that stores each Node and its
corresponding neighbors. As this implementation only requires
O(V + E) memory space where V represents the number of ver-
tices and E the number of edges in the Graph, it is recommend-
able in many scenarios that require a Graph to be implemented.

• Adjacency Matrix: Using an adjacency matrix containing en-
tries about the Graph’s topology represents an alternative. Since
the matrix is quadratic, storing only the topology already re-
quires O(V2) memory space. As a result, implementing a Graph

[November 7, 2017 at 14:12 – classicthesis version 4.2]

26 requirements

this way might be worse if there is no particular reason requir-
ing an adjacency matrix.

However, the broadcast problem is a complete graph. Without any
doubt, using an associative array to store the Nodes is sufficient as
each Node has a uniform chance to observe any other Node in the
Graph. Consequently, a data structure for storing a specific topology
is not required leaving the implementation at O(V) memory usage.
So far, only the Graph’s implementation itself has been clarified. Ob-
viously, data extracted from the self-stabilization process require data
structures as well. Since these experiments aim to find hard initial
configurations, we optimally want to gather all data about these con-
figurations. This includes the number of individual opinions, states
and counter values Tb and Tf. Moreover, this class has to define the
value of the parameters l and k that are needed to execute the bsf-
algorithm. Storing the number of individual values can be done
elegantly by using maps as they enable storing tuples. An individual
value and its quantity also represent a tuple which is why all previ-
ously mentioned individual values can be stored in a map. Similar
to a Node’s individual counter values, integers serve as data types to
store l and k. Structuring everything that has been said in this section
by now, Table 2 lists the Graph’s properties. Note that this class heav-
ily relies on standard template library (STL) containers that provide an
easy way for managing memory.
Completing the Graph’s implementation, let us move on to its func-
tionalities. Since this class is responsible for providing the core func-
tionalities of this application, there is a large sequence of procedures
that need to be executed to successfully run computational experi-
ments.

Table 2: Lists and describes a Graph’s properties

Property Datatype Description

nodes vector<Node> Stores the Graph

nodeStates map<char,int> Stores the quantity of in-
dividual states

nodeOpinions map<int,int> Stores the quantity of in-
dividual opinions

boostCounters map<int,int> Stores the quantity of in-
dividual Tb

frozenCounters map<int,int> Stores the quantity of in-
dividual Tf

maxBoostCounter integer Corresponds l

maxFrozenCounter integer Corresponds k

1. First, a Graph is instantiated by passing n, the number of Node’s,
to the constructor. After that, the constructor needs to initial-
ize the Graph’s properties. Filling the Graph with Nodes is

[November 7, 2017 at 14:12 – classicthesis version 4.2]

5.2 implementing the bsf-protocol 27

done by generating randomly determined opinions based on
a Bernoulli distribution. Furthermore, a Node always finds it-
self in the boosting state after its initialization. As long as the
Graph is not fully initialized, determining Nodes that are being
observed is neither required nor guarantees a uniform Node
determination at this point. During the initialization, the con-
structor also has to increase the generated opinion’s and cho-
sen state’s individual number in the corresponding map. Al-
gorithm 2 shows how the Graph initialization could be imple-
mented. Note that the initProperties function is trivially
implemented by simply initializing each data structure with 0.
Therefore, the function will not be described in greater detail.

Algorithm 2 Graph initialization

1: procedure Graph(n)
2: Seed random number generator
3: Call initProperties(n)
4: i← 0

5: while i < n do
6: b← unif{0,1} . Generate an opinion
7: Node ni ← Node(b, ′b ′,0,0) . Create Node
8: f (b)← f (b) +1 . Update opinion map
9: f (’b’)← f (’b’) +1 . Update state map

10: V[i] = ni . Insert Node
11: end while
12: end procedure

2. After initializing the Graph’s properties, the next step includes
implementing the bsf-algorithm. Before discussing the details,
there is one more important information that we need to be
careful about. Recall that a Graph contains exactly one source
whose opinion is supposed to be propagated and set to a fixed
value. This problem is solved by skipping V[0] in each round
of the algorithm’s execution as the implementation always ex-
pects the source to be there. Consequently, the very first Node’s
opinion in the Graph never changes. After skipping the source,
the implementation samples two Nodes chosen uniformly at
random for each Node in the Graph. As soon as each Node’s
neighbors are set, the bsf-algorithm can be executed.
In case a Node is boosting, there are only two major conditions
that need to be checked. Consider Node ni to have opinion b.
ni’s opinion changes, if the majority of output bits currently ob-
served does not equal b. This means that ni’s neighbors both
need to have the same opinion 1− b. On the other hand, ni’s
boost duration Tb increases if both neighbors have opinion b.
Any other case results in Tb being reset to 0. Moreover, Tb
must not exceed l meaning that as soon as Tb equals l, ni be-
comes susceptible to 1− b. Nodes susceptible to b change their
opinion and become frozen as soon as they see opinion b. In
this case, Nodes only look at exactly one of their neighbors

[November 7, 2017 at 14:12 – classicthesis version 4.2]

28 requirements

opinions. If that particular opinion equals b, the correspond-
ing Node freezes. Concerning frozen Nodes, this part of the
algorithm is called as long as the freeze duration Tf does not
exceed k. While this is not the case, Tf is increased. As soon as
Tf equals k, ni restarts boosting. In addition to the algorithm
itself, at any point of its execution, we want to track the quan-
tity of individual states and opinions in the Graph. This means
that each map needs to be updated appropriately. Some auxil-
iary functions can be used to accomplish these changes as well
as retain code readability. Since these function’s implementa-
tions are trivial taking an old and a new value as their parame-
ters, they do not require any explanations. Listing all the above
mentioned operations would be too complicated. That is why
the notations B(ni), S(ni) and F(ni) used in Algorithm 3 are
supposed to denote all operations related to ni’s corresponding
state that have to be executed for ni to complete one round of
the bsf-algorithm’s execution.

Algorithm 3 bsf-algorithm

1: procedure selfstabilize
2: c← 0

3: i← 1 . Skip the Zealot
4: while f (Opinion(V[0])) < n do . Check if self-stabilized
5: Call sample() . Sample neighbors
6: while i < n do . Iterate over Nodes
7: if State(ni) == ’b’ then
8: B(V[i])
9: else if State(ni) == ’s’ then

10: S(V[i])
11: else if State(ni) == ’f’ then
12: F(V[i])
13: end if
14: i← i+ 1

15: end while
16: c← c+ 1 . Completed one round
17: i← 1 . Restart with first Node
18: end while
19: return c
20: end procedure

3. Finally, the number of rounds resulting from Algorithm 3 can
be used to make a statement on the convergence time of the
algorithm. However, running the application more than once
leads to the same initial configurations to be self-stabilized over
and over. With respect to these configurations, each result is
based on a uniform opinion distribution and exclusively boost-
ing Nodes. This means that the next step towards finding hard
initial configurations requires implementing a procedure that
automatically searches for these configurations by utilizing this
implementation.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

5.3 simulated annealing 29

5.2.3 Preparing the GraphController Class

At this point of the implementation, this class only needs to instanti-
ate a Graph and run the self-stabilization algorithm. One could argue
that a task this simple does not require to be executed in an additional
class. The argument is reasonable as this could be done in the Main
module as well. However, as mentioned in Section 5.2.2, this imple-
mentation still requires a procedure that considerably increases its
benefit. As this procedure is going to be rather complicated, provid-
ing another class for its implementation is more reasonable. Neverthe-
less, neither the properties nor any specific functions needed by this
class can be determined yet. The next section does not only focus on
the aforementioned procedure but gives more detailed explanations
on the requirements of this class as well.

5.3 simulated annealing

Optimization problems in computer science mostly require a strategy
that provides a decent approximation of an optimal solution. That is
because a brute-force solution is infeasible in most cases, especially
with respect to problems that can not be solved in polynomial run-
time. Let C denote the number of possible configurations, note that
self-stabilizing any initial arbitrary configuration using our candidate
algorithm would require the self-stabilization of

C = 2(6blog2(n)c)n−1 (5)

configurations, assuming that l and k are both set to log(n).

Proof. Each Node n in Graph G can either have opinion 0 or 1 and
be in one out of three states. Moreover, each n’s individual counter
values Tb and Tf can only be set to a value α where 0 6 α <

blog(n)c ∀α ∈ N. Applying basic combinatorics, this configuration
space leads to (2 · 3blog2(n)c)n possible configurations. However, set-
ting the source’s state and counter values is neither required nor sen-
sible in the first place. Consequently, only its opinion needs to be
considered which leads to n− 1 Nodes with the exact same number
of parameters that can arbitrarily be combined. Furthermore, only the
source ends up with exactly two configurations from which we can
conclude the final result.

Consequently, a brute-force solution is clearly not an option. Simu-
lated annealing [25] is a randomized search heuristic that allows ap-
proximating optimization problems where considering every single
solution is computationally infeasible. The following steps describe
the idea behind the heuristic.

1. Choose an initial energy state T0, also called temperature. This
value highly depends on the problem and has a considerable
impact on the entire simulation. Since determining the temper-
ature requires running the self-stabilization algorithm, chapter

[November 7, 2017 at 14:12 – classicthesis version 4.2]

30 requirements

6 is going to show how T0 is determined in relation to this par-
ticular problem.

2. Calculate a randomly generated solution s. The function return-
ing this solution is called cost function c(x). Concerning our
problem, the bsf-algorithm represents the cost function. Fur-
thermore, when speaking of a solution, we always refer to the
number of rounds resulting from the algorithm.

3. Generate a neighbor configuration and calculate solution s ′ re-
sulting from c ′(x). As it is impossible to give a concrete defini-
tion regarding the term neighbor configuration in general, the
process of generating such a solution is not trivial at all. For
example, a neighbor configuration could involve the number of
individual opinions, states or counter values to be changed. This
means that the challenge in generating a new configuration lies
in changing an appropriate quantity of Nodes while keeping
the process computable in terms of the algorithm’s runtime.

4. If s ′ > s, we found a better1 solution and s is set to s ′. If this is

not the case, we check the so-called acceptance probability e
s ′−s
Tk

where Tk denotes the temperature in round k that determines
whether s ′ is still accepted as the new solution. Should the re-
sulting probability be greater than a randomly generated value
r ∈ [0, 1], s ′ is accepted even though there is no improvement
in the new result. Since there is a chance that the simulation
could be stuck in local minima at some point, this mechanism
is supposed to provide a way for escaping them.

5. Update the temperature. There are several strategies [36] that
can be applied to reduce its value. Optimally, the process updat-
ing Tk should guarantee a well scaling temperature with respect
to the acceptance probability. More precisely, at the beginning
of the simulation, there should be a high probability for bad
solutions to be determined as the new solution. However, as
the simulation proceeds, the probability should converge to 0 at
some point. As this process is at least as complex as determin-
ing an appropriate temperature, Chapter 6 provides a separate
section dedicated to present several ways on how to deal with
this issue.

6. Repeat step three to five as long as Tk is non-negative or has not
reached 0+ c for some problem-dependent constant c.

Algorithm 4 shows the entire procedure explained above. This sec-
tion continues by presenting strategies for generating neighbor config-
urations. After that, Section 5.3.2 discusses how the simulation’s basic
concept needs to be adjusted for calculating sensible results. Since the
difficulties arising from determining the initial temperature and up-
dating Tk require the execution of experiments, neither of them will
be addressed in this section.

1 If this was a minimization problem, a better solution would correspond to s ′ < s

[November 7, 2017 at 14:12 – classicthesis version 4.2]

5.3 simulated annealing 31

Algorithm 4 Simulated annealing

1: procedure simulate
2: Set Tk
3: s = c(x) . Calculate solution
4: while Tk > 0+ c do
5: Generate neighbor
6: s ′ = c ′(x) . Calculate neighbor solution
7: if s ′ > s then . Compare solutions
8: s = s ′

9: else if e
s ′−s
Tk > rand(0,1) then . Check acceptance prob.

10: s = s ′

11: end if
12: Reduce Tk
13: end while
14: return s
15: end procedure

5.3.1 Generating Neighbor Configurations

First off, the process of generating neighbor configurations requires
strategies for adjusting a Graph’s parameters. In our case, this in-
cludes the individual number of opinions, states and counter values.
In an optimal scenario, strategies adjusting these parameters cover a
well distributed configuration space that can be explored by the sim-
ulation. This can be achieved by using and combining several proba-
bility distributions.

Figure 2: Shows a normal distribution
around the mean µ = 0 with
standard deviation σ = 103

Starting with the opinion pa-
rameter, remember that there are
exactly n = f (0) + f (1) opin-
ions in the Graph. Let opin-
ion b ∈ {0, 1}. Appropriately ad-
justing the individual number
of opinions can be done by ei-
ther reducing or increasing f (b)
which, at the same time, leads to
change in the quantity of f (1−b).
A probability distribution that is
perfectly suitable for achieving
such a change is the normal dis-
tribution. A concrete strategy for
changing the number of opinion b in Graph G where b is randomly
determined is the following: The number of b’s added or subtracted
is based on a value generated by a normal distribution N(µ = 0,σ)
where each random number r is generated around the mean µ with
standard deviation σ. Figure 2 shows such a distribution. Note that r
must neither under- nor overflow f (b) as this would cause the appli-
cation to crash. Also, recall that the source’s opinion must not change.
By setting µ = 0, there is no need to worry about a value to be added
or subtracted. Otherwise, an additional mechanism for making that

[November 7, 2017 at 14:12 – classicthesis version 4.2]

32 requirements

decision would be required. This shift in the number of opinions will
be denoted as shift(G) where G represents the Graph in which a
random number of opinions is changed.
Moving on to the individual counter values, this is another case
where using a probability distribution results in covering numerous
configurations. Even though the exact values of l and k have not yet
been determined, it can already be stated that these parameters are
not going to be set to a constant value for any n ∈ N. Boczkowski
et al. [3] state that they probably scale around log(n). Since Tb and
Tf can be set to any value α where 0 6 α < blog(n)c ∀α ∈ N, a dis-
tribution that is capable of dealing with different quantities of values
is needed. This condition can easily be satisfied by a binomial distri-
bution B(t = blog(n)c− 1,p) where t represents the number of trials
with probability of success equal to p. Figure 3 shows a typical bi-
nomial distribution. Obviously, the number of trials must not exceed
l or k which is why t is either set to l− 1 when randomizing Tb or
k− 1 in case of Tf. Note that setting t to l or k might cause problems.
Doing so leads Tb to reach l+ 1 in some cases and Tf to reach k+ 1.
Since we do not unnecessarily want these values to be increased to an
invalid value, the maximum value generated by the distribution has
to be blog(n) − 1c. The idea behind using this distribution is to ran-
domize the counter values Tb and Tf of k Nodes according to random
values generated by the distribution. Since p ∈ [0, 1], these values can
arbitrarily be scaled which results in a large configuration space to be
covered. Randomly determining the number of counter values that
are randomized is an option as well. Moreover, both counter values
do not need to be randomized according to a binomial distribution
with the same probability of success. Always choosing an identical
p for randomizing both values results in numerous configurations to
be neglected. This strategy will be denoted by randc(G,k) where G
represents the Graph in which k Node’s counter values are changed.

Figure 3: Shows a binomial distribu-
tion where t = 10 with prob-
ability of success p = 0.5

Finally, the states also require
a randomization strategy so that
the simulation has the opportu-
nity to search its way through a
completely randomized configu-
ration space. In theory, the strat-
egy presented for randomizing
the number of opinions could be
used in this case as well. How-
ever, using a normal distribution
to determine the number of indi-
vidual states changing is rather
inappropriate. The main reason
for that is that a Node’s state is

a ternary instead of a binary value as n = f (′b ′) + f (′s ′) + f (′f ′). As-
sume that a normal distribution is used to determine a change in the
number of state i where i ∈ {b, s, f}. While applying this strategy to
adjust the number of opinions does not require an additional strategy,
the fact that states are ternary values complicates this situation. Find-

[November 7, 2017 at 14:12 – classicthesis version 4.2]

5.3 simulated annealing 33

ing an appropriate system for changing f (′b ′) + f (′s ′) + f (′f ′) − f (′i ′)
is obligatory. As a result, guaranteeing a properly randomized search
space becomes rather difficult. Fortunately, we can simply utilize the
fact that states are ternary values. In the strategy we will apply, we
flip the state of k randomly chosen Nodes. Flipping a Node’s state
means that its state changes corresponding to the bsf-algorithm.
Without checking any conditions, a boosting Node becomes suscepti-
ble, susceptible Nodes freeze and whenever a frozen Node is chosen,
it restarts boosting. This way, there is no need to worry about the re-
quirement of any additional randomization strategies. Even though
probability distributions do not provide a good way for randomizing
this parameter, a normal distribution may be used to determine the
position of k Nodes whose states are flipped. flip(G,k) will serve as
notation for denoting this strategy.
As the strategies for generating neighbor configurations have been
clarified, it is necessary to combine the simulation’s algorithm with
these strategies. Moreover, the GraphController class can be com-
pleted now.

5.3.2 Simulation Implementation

Explanations on everything that is required to implement the simu-
lation, excluding Tk, have been given. Still, the simulation’s general
algorithm presented at the beginning of this section, Algorithm 4,
needs to be adapted to the self-stabilizing broadcast problem. Let
us think about what kind of changes need to be made while using
operations directly related to our problem. For this explanation, as-
sume that temperature Tk ∈ N+. After setting Tk, obtaining a solu-
tion requires initializing and self-stabilizing a Graph G0. Note that
self-stabilizing a Graph is highly probabilistic which means that we
cannot ignore the variance in this process. That is why a solution
will be based on the mean that results from self-stabilizing the same
Graph m-times where m ∈ N+. It is also important to notice that,
once a Graph self-stabilized, that particular Graph can neither be
reproduced nor self-stabilized again. Procedures for allowing these
operations have not been implemented. Graph Gs ′ is supposed to be
based on a neighbor configuration of Gs though. Fortunately, this is-
sue can simply be avoided by copying G0 before its self-stabilization.
That allows reusing G0 as many times as required. Continuing with
the implementation, we can start with the annealing. Before apply-
ing the strategies presented in Section 5.3.1, it is necessary to create
another copy of Gs. This copy is required for resetting Gs after its

self-stabilization in case neither s ′ > s nor e
s ′−s
Tk > rand(0,1). After

creating a copy, our strategies can be applied. At this point, a last
copy of the new Graph Gs ′ has to be created for resetting Gs ′ to its
initial state as well. Otherwise, there is no way for continuing with
the new Graph in case we find a new solution. Determining s ′ by
taking the mean over m self-stabilizations of Gs ′ , validating s ′ and
reducing the temperature are the only operations left completing the

[November 7, 2017 at 14:12 – classicthesis version 4.2]

34 requirements

Algorithm 5 Adapted simulated annealing

1: procedure simulate(n,k)
2: Set Tk
3: G0 ← Graph(n)
4: Gs ← G0 . Create the first backup
5: m← 10 . Choose m relatively small
6: s← 1

m

∑m
k=1 selfstabilize(G0)

7: while Tk > 0+ c do
8: Gb ← Gs . Copy old configuration
9: shift(Gs)

10: flip(Gs,k)
11: randc(Gs,k)
12: Gs ′ ← Gs . Copy new configuration
13: s ′ ← 1

m

∑m
k=1 selfstabilize(Gs)

14: if (s ′ > s) or (e
s ′−s
Tk > rand(0,1)) then

15: s = s ′

16: Gs ← Gs ′ . Override old Graph
17: else . Otherwise
18: Gs ← Gb . Discard neighbor configuration
19: end if
20: Reduce Tk
21: end while
22: return s
23: end procedure

simulation’s one round of the annealing. As soon as Tk reaches 0+ c
for some problem-dependent constant c, the simulation is finished.
Finally, s ′ can be returned and Gs ′ ’s data optionally be printed. Algo-
rithm 5 shows the adapted algorithm described above. This version
also suggests to check s ′ and the acceptance probability in only one
condition as they result in the same operations to be executed.

The algorithm’s implementable adaptation also reveals that the
GraphController class does not need to implement any proper-
ties. That is because, at any point of the algorithm’s execution, all
data can simply be extracted from an arbitrary Graph as long as the
access is not restricted. An additional function that takes a Graph as
its parameter for retrieving and printing the data should be imple-
mented though.
There is one more aspect that needs to be analyzed. As this imple-
mentation is ideally capable of finding hard initial configurations for
n > 106, runtime optimization has already been mentioned as an im-
portant requirement. Therefore, a mechanism directly related to that
matter is going to be subject of this chapter’s last section.

5.4 multi-threading

Most computers have to be able to handle the execution of multiple
applications at the same time. Besides that, applications usually have

[November 7, 2017 at 14:12 – classicthesis version 4.2]

5.4 multi-threading 35

to perform several actions concurrently as well. While each running
application handled by an operating system is called a process, an
action performed by a process runs in a so-called thread. Moreover,
the term multi-threading refers to the concurrent execution of multi-
ple threads. In order to enable multi-threading, a multi-core central
processing unit (CPU) is required as the number of threads that can
concurrently be executed is equal to the number of cores provided by
a processor. That arises the question of how single core CPUs manage
multiple threads as they still seem to guarantee parallelism to some
extent. The reason as to why one core is capable of creating the illu-
sion of concurrent thread execution lies in how CPUs treat threads
in general. A core does not keep on executing the exact same thread
but switches between several other threads, called context switches. As
a result, even a single core CPU seems to execute multiple threads
at the same time. Moreover, context switching implies that a thread
can be in different states as there are assigned as well as non-assigned
threads. In fact, threads can switch between the three following states
[39]:

• Ready: Whenever a thread is invoked and ready for its execu-
tion, it starts in this state. Threads in this state need to be as-
signed to a CPU’s core. Note that, in case there are more threads
ready for their execution than cores available, the operating sys-
tem is in charge of choosing the next thread for its assignment.
This kind of thread management is called scheduling. As soon
as the operating system assigns a thread to a CPU’s core, it
switches into the running state.

• Running: A thread in the running state can progress in three
different ways.

1. The thread terminates.

2. The thread resigns back into the ready state after a specific
amount of time to allow the execution of other threads i. e.
to simulate parallelism.

3. The thread encounters a condition that needs to be satis-
fied for the thread to continue which leads the thread to
transition into the blocked state.

• Blocked: As soon as a thread’s blocking condition is satisfied,
it returns to the ready state. The condition may also include in-
and output operations.

That being said, multi-threading sounds like a great way to im-
prove an application’s runtime. Especially when the application heav-
ily relies on calculations. However, there is a major issue in relation
to multi-threaded applications that demands a correctly implemented
threading library, namely synchronization. Imagine a scenario in which
multiple threads concurrently change a certain value. Situations like
that must not be allowed by an implementation as they lead to incon-
sistent data. In this case, a mechanism for making sure that only one

[November 7, 2017 at 14:12 – classicthesis version 4.2]

36 requirements

thread at a time may access shared memory, mutual exclusion (mutex),
has to be implemented. Code that may only be run by exactly one
thread is called critical section.
One more danger a programmer has to be careful about when imple-
menting multi-threading are deadlocks. In relation to multi-threaded
applications, a deadlock describes a state in which an application is
unable to proceed as there are two threads that wait for each other
to release its resources. The following four conditions [5] need to be
satisfied for allowing deadlocks:

• Mutual exclusion: This condition’s meaning has already been
stated above.

• Hold and Wait: Describes a state in which a thread requests
additional resources to the ones it already holds.

• No preemption: In case a thread acquires a resource, no pre-
emption means that the resource must not be removed and can
only be released by the thread itself.

• Circular wait: Means that each thread waits for another thread
to release its resources.

Deadlocks can easily be avoided by simply making sure that at least
one of these conditions does not apply. The only condition that can
impossibly be ignored when threads need to access shared memory
segments is mutual exclusion. Strategies for specifically neglecting
any other condition have to be considered based on the respective
problem.
This section will present and analyze four concrete multi-threading
strategies. As this mechanism’s implementation differs for every pro-
gramming language, there will be listings showing actual C++ code
instead of pseudocode. Please note that the strategies presented be-
low are merely considerations that are going to be evaluated in Sec-
tion 6.1.4.

5.4.1 Multi-threaded bsf-algorithm

A naïve approach for reducing our problem’s runtime could be con-
currently adjusting each Node’s opinion during the bsf-algorithm’s
execution. More precisely, threading the operations B(ni), S(ni) and
F(ni) depending on ni’s opinion. A Graph with n Nodes implies that
this implementation requires invoking and joining n threads in each
round of the algorithm’s execution. As mentioned above, invoking a
thread leads the thread to start in the ready state. Joining the threads
after their completion is obligatory because of two reasons. Firstly, the
variable that keeps track of how many rounds the algorithm has al-
ready required to self-stabilize may only be increased once. Secondly,
starting a new round requires the previous round’s completion which
means that each thread has to terminate before progressing to the
next round. Listing 1 shows this strategy’s implementation.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

5.4 multi-threading 37

Listing 1: Shows a multi-threaded bsf-algorithm implementation

std::vector<std::thread> threads;

int rounds = 0;

// Enter the self-stabilization loop

while(nodeOpinions[nodes.at(0).opinion] < nodes.size()){

sample();

// Invoke a thread for each node a put them into a vector

for(int i=1; i<nodes.size();i++){

// Parameters: function, instance of the corresponding

// class and arguments passed to the function

threads.push_back(std::thread(&Graph::executeOperation,

this,std::ref(nodes.at(i))));

}

// Join the threads

for(auto& thread : threads){

thread.join();

}

// Remove all threads from the vector

threads.clear();

rounds++;

}

return rounds;

Please note that removing all threads from the vector is mandatory
as the application crashes otherwise. The reason for that is the follow-
ing: as soon as all threads complete their corresponding operations in
the second round, the application tries to join the first thread in the
vector. However, a thread that has already been joined must not be
joined again which causes the application to crash.
As this strategy does not involve threads that read and write data
which could potentially lead to inconsistency, mutual exclusion is
not required. As a result, there is no need to worry about the ap-
plication to run into a deadlock either. Every single aspect of this
approach seemed favorable so far. Keep in mind that invoking and
joining αn threads where α represents the number of rounds the al-
gorithm needs to self-stabilize results in a massive overhead though.
Moreover, the operations per thread i. e. the number of operations ex-
ecuted in B(ni), S(ni) and F(ni) is rather small. Consequently, this
strategy is highly likely to not improve the algorithm’s runtime. Sec-
tion 6.1.4 will evaluate this conclusion.

5.4.2 Concurrent Configuration Adjustments

Moving to the adapted simulated annealing, operations that are per-
fectly suitable for applying a multi-threading strategy are shift(Gs),
flip(Gs,k) and randc(Gs,k). These operations do not compete for any

[November 7, 2017 at 14:12 – classicthesis version 4.2]

38 requirements

data as each of them randomizes different properties. This strategy’s
implementation is equally to the one previously presented as shown
by Listing 2.

Listing 2: Shows a multi-threaded neighbor configuration generation

std::vector<std::thread> threads;

// Invoke a thread for each function where a threads

// requires the function, an instance of the corresponding

// class and the function’s parameters

threads.push_back(std::thread(&Graph::shift,

std::ref(pullModel)));

threads.push_back(std::thread(&Graph::flip,

std::ref(pullModel),k));

threads.push_back(std::thread(&Graph::randC,

std::ref(pullModel),k));

// Join the threads

for(auto& thread : threads){

thread.join();

}

Using a vector for thread management is obviously optional as join-
ing them requires three lines of code even if each thread is manu-
ally invoked. Note that each function’s randomization aspect plays
a significant role in this implementation. When applying this strat-
egy, it is crucial to make sure that std::rand is not used by any
thread for generating random numbers. That is because of a problem
mainly related to smaller Graphs. When running the application for
smaller n, the simulation will need less than a second for executing
one round where n depends on a system’s respective hardware. This
will lead to std::rand generating the exact same number over and
over. Not to mention that std::rand is not thread-safe either as de-
scribed in its documentation. That is why this implementation uses
std::default_random_engine for generating time-independent
and thread-safe random numbers.
This strategy’s potential for improving the application’s runtime is
considerably higher compared to the approach presented in 5.4.1.
The number of operations executed in each thread is not only no-
ticeably higher but the overhead arising from thread creation and
invocation is significantly lower as well. Evaluating this strategy will
show whether there is an in- or decrease in the application’s runtime.

5.4.3 Achieving a Multi-threaded Mean Calculation

Staying in the adapted simulated annealing, the next strategy refers to
determining the mean that is taken over m Graph self-stabilizations.
This turns out to be rather difficult as this is the first time we need
to deal with a value returned by a function that we want to run
in a thread. More precisely, calculating the mean requires summing

[November 7, 2017 at 14:12 – classicthesis version 4.2]

5.4 multi-threading 39

up m self-stabilization results where each self-stabilization runs in a
seperate thread. In fact, std::thread is unable to provide this func-
tionality by itself. Listing 3 shows an auxilliary function that uses
std::future for guaranteing a multi-threaded mean calculation.

Listing 3: Shows a multi-threaded mean calculation

int m = 10;

double sum = 0;

std::vector<std::thread> threads;

std::vector<std::future<int>> futures;

// Invoke m threads and store their values in a promise

// Note that Graph g is passed to this function

for(int i = 0; i < m; i++){

std::promise<int> p;

futures.push_back(promise.get_future());

threads.push_back(std::thread(&Graph::selfstabilize,

std::move(g), std::move(p)));

}

// Join the threads

for(auto& thread : threads){

thread.join();

}

for(int i = 0; i < m; i++){

sum = sum + futures.at(i).get();

}

return (sum/m);

Let us take a look at the first loop as it represents the most com-
plicated part of this implementation. First, an std::promise p is
declared. This namespace allows storing values that are not yet avail-
able but will be determined in the future. However, a promise has
to be connected to an std::future to aquire its value. Using a vec-
tor once again provides an elegant solution for managing m future
objects. After inserting a future into the vector, the future’s corre-
sponding thread can be invoked. Note that this invocation does not
only require passing the function and a reference that is able to call
the function but a promise for storing the function’s result as well.
This results in the following adjustments that have to be implemented
in Algorithm 3:

• Algorithm 3 must take a promise as its parameter.

• Receiving legitimate results demands reseeding each Graph’s
random number generator. Not doing so leads to producing
the exact same result over and over as g’s random number gen-
erator was initialzed in its constructor.

• Before leaving Algorithm 3, the promise that is passed to the
function needs to be set to the function’s result which would

[November 7, 2017 at 14:12 – classicthesis version 4.2]

40 requirements

normally be returned. In case computing single results is no
longer required, returning a value is unnecessary as well.

Fortunately, these adjustments are easily implemented as shown
by Listing 4. This strategy might fail at improving the application’s
runtime for smaller n. On the other hand, sequentially determining
the mean is highly likely going to be too slow in case of large scale
simulations. The next chapter will give further insights on this matter.

Listing 4: Shows the adjustments required in Algorithm 3

// Pass a promise to the function

void Graph::selfstabilize(std::promise<int> p){

// Reseed the random number generator

int seed = std::chrono::system_clock::now().

time_since_epoch().count();

generator.seed(seed);

/*

* Insert the rest of the algorithm

*/

// Pass the result to the promise at the end of the function

p.set_value(result);

5.4.4 Running each Simulation in a Thread

Considering that the data generated in Chapter 6 is going to be based
on numerous experiments, running multiple simulations at the same
time would be desirable. Since each simulation instantiates its Graphs
locally, i. e. it runs independently, there is no need to implement ad-
ditional synchronization measures. Furthermore, this strategy’s im-
plementation does not differ compared to the others, excluding the
mean calculation, as shown by Listing 5.

Listing 5: Shows how to run each simulation in a thread

std::vector<std::thread> threads;

// Invoke s threads where s is passed as a parameter

for(int i=0; i<s; ++i){

threads.push_back(std::thread(&GraphController::simulate,

this,n,k));

}

// Join the threads

for(auto& thread : threads){

thread.join();

}

[November 7, 2017 at 14:12 – classicthesis version 4.2]

5.4 multi-threading 41

As a simulation captures the largest number of operations in the
entire application, this strategy is not only simple but enormously
powerful as well. Based on the fact that choosing n > 106 results in
accessing tens of millions of Nodes, this implementation might even
be required to allow large scale simulations. The absolute runtime
difference will be presented in Section 6.1.4.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

Part VI

E X P E R I M E N T S

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

6
R U N N I N G T H E A L G O R I T H M

All experiments that are going to be executed in this chapter are either
required for determining parameters, measuring runtimes or finding
hard initial configurations. That is why this chapter is divided into
three sections. The first section provides comprehensive explanations
on how each parameter that explicitly requires experiments is deter-
mined. After choosing parameters that look optimal to the algorithm,
we will continue by attempting to find correlations in hard configu-
rations. Finally, Section 6.3 will take on checking the conjecture that
applying the bsf-algorithm leads to any initial configuration to self-
stabilize in O(logn).

6.1 finding appropriate parameters

Several parts of the implementation remained incomplete as they re-
quired one or multiple parameters. Since most of them have a con-
siderable impact on the application’s runtime and the convergence of
the bsf-algorithm, their choices have to be based on concrete data.
This section will start off by presenting the measure used for evaluat-
ing the data retrieved in this chapter. After that, this section proceeds
by determining the following parameters:

1. First, it is crucial to find optimal values concerning the bsf-
algorithm’s parameters as they highly influence each round
of the simulation. In this case, optimal means that the number
of rounds required by the algorithm to self-stabilize should be
as small as possible. The insights provided by Boczkowski et al.
[3] will be used for choosing these parameters in Section 6.1.1.

2. The next step includes optimizing the simulation. Doing so re-
quires choosing a starting temperature T0. Section 5.3 has al-
ready mentioned that this parameter’s value depends on the
respective problem. That is why Section 6.1.2 will attempt to
find an optimal value for T0.

3. After finding an appropriate starting temperature, experimen-
tally determining a well scaling schedule for reducing Tk is a
crucial step for escaping local and discovering global minima.
Therefore, Section 6.1.3 will test several cooling schedules [16,
25, 36] for optimizing the simulation.

4. Finally, Section 6.1.4 will evaluate each threading strategy pre-
sented in Section 5.4. This includes evaluating the usage of sev-
eral strategies at the same time.

45

[November 7, 2017 at 14:12 – classicthesis version 4.2]

46 running the algorithm

6.1.1 Optimally Choosing l and k

The most important parameters for showing that the bsf-algorithm
converges in O(logn) for any arbitrary configuration are l and k. Un-
wisely setting their values might lead to conclusions that can be dis-
proved. Fortunately, Boczkowski et al. [3] mention that both parame-
ters are likely to scale around logn. Because of this, the following ex-
periments will be executed: in each experiment, the parameters l and
k are set to a value α logn where α ∈ Q+. Furthermore, we calculate
a value by summing up the results of 102 independent experiments
on the same configuration. This allows to draw a conclusion based on
similar configurations. Moreover, we also calculate the mean over all
experiments to reduce the amount of variance. The last factor influ-
encing the results of our experiments is the number of Nodes n that
we initialize a Graph with. In these experiments, we will use decimal
powers starting with 102 and ending with 106. Table 3 starts off by
only considering parameter combinations in which l = k.

Table 3: Shows the mean values related to experiments with l = k where
each result is based on 102 experiments

n =

l∧ k 102 103 104 105 106

blog10 nc 17 23 28 36 42

b12 log2 nc 8 23 31 35 52

blog2 nc 10 16 20 27 28

b2 log2 nc 13 16 28 33 38

These results show that setting l and k to blog2 nc is, on average,
the best option in most cases. They also reveal that there is no need
to test l∧ k > b2 log2 nc as a considerable increase in the number of
rounds becomes visible as soon as we move to larger Graphs. Note
that an attempt to find appropriate parameters also has to consider
combinations where l 6= k. Remember the beginning of Chapter 4
where we distinguished between two following two scenarios regard-
ing the convergence of the algorithm:

• The configuration of the Graph directly leads to a converging
behavior.

• First, the algorithm diverges and reaches a point where the num-
ber of disagreeing Nodes in the Graph comes close to n. After
the Nodes restart boosting, the fact that most of them are go-
ing to be sensitive to the opposite opinion leads to a quickly
converging behavior with high probability.

Considering these scenarios, neither in- nor decreasing the number
of rounds in the boosting period should lead to an improvement in
the number of rounds a Graph needs to converge. Shortening the
period results in the Node’s opinions to fluctuate too much. On the

[November 7, 2017 at 14:12 – classicthesis version 4.2]

6.1 finding appropriate parameters 47

other hand, extending the period leads to the Nodes requiring too
many rounds to agree on an opinion. However, rescaling the time
frame for frozen Nodes might have a positive effect on the conver-
gence of the algorithm. Table 4 shows whether these assumptions are
true. Note that we only consider combinations that include blog2 nc
because of our previous results. Besides that, in case a combination
starts producing results that are highly unlikely to lead to an improve-
ment, the parameters will not be tested any further.

Table 4: Shows the mean values related to experiments with l 6= k where
each result is based on 102 experiments

n =

l k 102 103 104 105 106

blog2 nc blog10 nc 7 12 21 25 32

blog2 nc b12 log2 nc 5 13 21 28 32

blog2 nc b2 log2 nc 7 11 22 28 32

blog10 nc blog2 nc 13 23 37 X X

b12 log2 nc blog2 nc 6 26 36 X X

b2 log2 nc blog2 nc 6 13 27 35 42

Even though rescaling k leads to results similar to l∧ k = blog2 nc,
parameter combinations with l 6= k do not lead to a consistent im-
provement. While smaller Graphs tend to converge slightly faster,
n > 104 neither appears to profit from shortening nor extending the
period in which Nodes are frozen. This behavior can not be observed
with respect to the boosting period. In fact, these results confirm
our previous assumption. Rescaling l leads to a tendency towards
worse results when setting l < k as well. As these experiments do not
achieve an improvement, any further experiment that is executed sub-
sequently will have the algorithm’s parameters l and k set to blog2 nc.

6.1.2 Temperature Determination

Carefully determining the inital energy state T0 represents an essen-
tial step towards optimizing the simulation. The main reason for

that lies in the acceptance probability e
s ′−s
Tk where we recall s ′ to be

the number of rounds configuration c ′ needed to self-stabilize while
c ′ represents a neighbor configuration based on configuration c in
round k (see Chapter 5 Section 5.3). To show that T0 has a consider-
able impact, let us analyze the acceptance probability’s behavior in
relation to s, s ′ and Tk. Therefore, consider the following two scenar-
ios where ∆s corresponds to s ′ − s:

• |∆s| > T0: Choosing a starting temperature that is highly likely
to be lower than most |∆s| that are expected to be generated
at the beginning of the simulation is an unreasonable decision.
That is because this condition implies that T0 is lower than al-

[November 7, 2017 at 14:12 – classicthesis version 4.2]

48 running the algorithm

most any |∆s| during the entire simulation. Therefore, the ac-

ceptance probability e
−∆s
T0 −−−−−→

T0→|∆s|
0.3675. Consequently, the

probability for accepting a solution that does not improve the
previous result is 6 36.75% in most cases. Since T0 progresses
towards 0+ c for some problem-dependent constant c, the per-
centage will constantly decrease. This leads to a low probability
for escaping local minima which does not fullfil the purpose of
the acceptance probability.

• |∆s| < T0: In contrast to the previous scenario, choosing an ini-
tial energy state T0 that is greater than |∆s| for a specific amount

of time during the simulation leads e
−∆s
T0 −−−−→

T0→∞
1. Because of

T0’s decreasing behavior, this leads to a well scaling acceptance
probability. Note that choosing a starting temperature that is
too large leads to nearly any result being accepted for a long
time during the simulation.

The previous explanations show that the effectiveness of the simu-
lation heavily relies on determining an appropriate starting tempera-
ture. That is why we are especially interested in the behavior of |∆s|.
In order to gain knowledge about |∆s|, we will run multiple simula-
tions where each simulation runs for 100 rounds. Since we are look-
ing for the mean over all values of |∆s|, we will set T0 to a large value
which leads to each round’s result to be accepted as the new result.
Doing so allows gaining an extensive insight in how much |∆s| fluctu-
ates. Table 5 shows the results produced in several simulations. Note
that these results use k = n

10 for generating neighbor configurations.

Table 5: Shows the mean values of |∆s| where each result is based on one
simulation running for 102 rounds

n =

Simulation 102 103 104 105 106

1 24 24 23 25 29

2 18 22 17 27 35

3 16 20 23 28 32

4 17 25 25 30 33

5 19 23 23 34 30

First, we notice that |∆s| does not fluctuate within a given quantity
of Nodes. Even more interesting is the fact that increasing n does not
lead to a considerable increase in |∆s| either. Combining the knowl-
edge we gained from Section 6.1.1 and the results provided in Table 5,
we can roughly determine the smallest value required for achieving
a decent acceptance probability when starting a simulation. Never-
theless, we will still set T0 to multiple values when executing exper-
iments in the following sections. Since the process we investigate to

[November 7, 2017 at 14:12 – classicthesis version 4.2]

6.1 finding appropriate parameters 49

have a high variance, we can neither guarantee nor even proof that
setting T0 to a specific value leads to an optimal result.

6.1.3 Cooling Schedules

After determining parameters that look optimal to the algorithm and
getting decent insights regarding T0, we need to find a way for pro-
gressively reducing the temperature during the simulation. Therefore,
we will test three popular cooling schedules commonly used in rela-
tion to simulated annealing in this section. The linear cooling sched-
ule

Tk = T0 − c (6)

for some constant c > 0 as well as the exponential schedule

Tk = T0α
k (7)

with 0 < α < 1 represent very simple schedules for leading T0 to the
state of equilibrium after a certain number of rounds k [25]. Another
schedule that we will test in this section is the logarithmic cooling
schedule

Tk =
d

log(1+ k)
(8)

introduced by Geman and Geman [16] where d is independent of k
and optimally set to the largest energy state that has to be overcome
by the simulation. In contrast to (6) and (7), the logarithmic sched-
ule has been proven to lead a system to the global minimum state in
the limit of infinite time [19]. A way for comparing these schedules
that has been used on a simple system as well as an NP-hard prob-
lem by Nourani et al. [36] is to capture the best-so-far-energy (BSFE)
reached in round k [17]. Recall that we are still interested in finding
configurations that require the maximum number of rounds for the
bsf-algorithm to converge to a valid state. It is important to notice
that, in contrast to the NP-hard problem, we do not define the BSFE
to be a negative value. This is why, in our case, the BSFE corresponds
to the largest instead of the smallest value seen in round k. Using this
method will not only educate us about the cooling schedule that we
should use, but we will learn about the number of rounds a simu-
lation needs until there is no more improvement in the result deter-
mined by the simulation. Consequently, we will execute the following
independent experiments for getting the information we are looking
for: we subsequently test each cooling schedule’s performance on sev-
eral Node populations ranging from 103 to 105 by observing the BSFE
for a large number of iterations N. We choose c = k·T0

N , α = 0.95 and
d = T0 for allowing a slow cooling process in case of each schedule.
Moreover, we once again use k = n

10 for generating neighbor configu-
rations.

The first thing that we learn from Figure 4 is that the number of
iterations required for reaching the BSFE is not large. This is why we

[November 7, 2017 at 14:12 – classicthesis version 4.2]

50 running the algorithm

Figure 4: Shows the best-so-far-energies determined for each cooling sched-
ule. The y-axis shows the BSFE while the x-axis shows the number
of iterations.

will, similarly to simulations in earlier sections, keep on running any
future simulations for 102 iterations. Unfortunately, this comparison
does not deliver a result that allows to sensibly choose an appropri-
ate cooling schedule. The main reason for this is likely to be the fact
that the bsf-algorithm is influenced by multiple factors including
our strategies for generating neighbor configurations. As a result, ob-
serving the BSFE resulting from only one simulation might cover a
configuration space that is insufficient for choosing an appropriate
schedule. Therefore, we will base our decision on experiments that
take a larger variety of factors influencing the bsf-algorithm into ac-
count. We subsequently test each cooling schedule in ten independent
simulations where we run each simulation with different parameters,
i. e. we change T0, k, the mean σ that we use for determining the num-
ber of Nodes changing in each round and the probability of success p
for randomizing the number of individual counter values. After run-
ning these simulations, we take the mean over all best-so-far-energies
for determining the cooling schedule that was able to produce the
best results on average. The data points can be seen in Figure 5 as
well as the resulting mean values in Table 6.

Without looking at Table 6, we discover that the logarithmic cool-
ing schedule seems to perform slightly better than the others with
respect to lower quantities. Moreover, we can observe a considerable
difference in case of the largest population measured. The mean val-
ues that we computed for each quantity confirm these observations.
This also matches the results from Nourani et al. [36]. Note that Fig-

[November 7, 2017 at 14:12 – classicthesis version 4.2]

6.1 finding appropriate parameters 51

Figure 5: Shows the best-so-far-energies measured when considering a large
variety of parameter combinations. The y-axis shows the BSFE
while the x-axis shows the corresponding cooling schedule.

ure 5 also points to a problem that we will dedicate our attention to
in Section 6.2: the data points still exhibit a substantial spreading be-
havior within a given quantity of Nodes. Preferably, we would like
to be able to find hard initial configurations more consistently. There-
fore, eliminating convergence favoring configurations is going to be
the next task after evaluating our multi-threading strategies. Since the
logarithmic cooling schedule outperforms the others, future simula-
tions will be based only on this schedule.

Table 6: Shows the mean values and standard deviations in relation to the
data points from Figure 5

n =

Schedule 103 104 105

Exponential 55.2 73.04 84.88

Linear 53.96 69.51 83.79

Logarithmic 57.25 74.3 92.57

Standard Deviation 4.37 7.68 18.22

6.1.4 Multi-Threading Strategies Evaluation

Before we move to optimizing the search space, we still need to evalu-
ate the multi-threading strategies that were considered in Section 5.4.
As all parameters have been determined, we are now capable of test-

[November 7, 2017 at 14:12 – classicthesis version 4.2]

52 running the algorithm

ing each strategy with respect to the same conditions that are going to
apply when computing the final results. The following abbreviations
will be used for referring to each strategy.

• We use multi-threaded bsf for referring to a multi-threaded bsf-
algorithm.

• multi-threaded neighbor will be used when applying a multi-
threaded neighbor configuration generation.

• When using std::future as well as std::promise for cal-
culating the mean during a simulation, we use multi-threaded
mean.

Before running several simulations concurrently, we will test the
strategies mentioned above. This will allow us to implement and use
favorable strategies when running multiple large scale simulations.
Therefore, we will start by executing the following independent ex-
periments: we test each strategy on a given quantity of Nodes ranging
from 102 to 106 separately in exactly one simulation where we do not
change the parameters within a given quantity. Also, we purposely
choose k = n

2 for straining the neighbor configuration generation.

Table 7: Shows the runtimes measured for each multi-threading strategy in
seconds using a 4-core 3.5 GHz CPU

n =

Strategy 102 103 104 105 106

None 0.07 1.33 18.15 269 > 6600

Multi-threaded bsf 68.47 X X X X

Multi-threaded neighbor 0.11 1.31 17.38 206 > 6000

Multi-threaded mean 0.08 0.61 8.14 111 > 2400

Table 7 shows the performance of each individual strategy. We no-
tice that executing large scale simulations for n > 106 indeed requires
a considerable amount of time, especially when passing on multi-
threading strategies. Fortunately, multi-threaded neighbor as well as
multi-threaded mean allow accelerating the simulation in each rel-
evant case compared to the single-threaded variation. Also, the an-
ticipated overhead when multi-threading the bsf-algorithm can be
confirmed. There is no point in testing multi-threaded bsf even fur-
ther as only the overhead increases which would lead to even more
meaningless runtimes. As a result of these experiments, we will use
both runtime favoring strategies in any future simulations.
Completing our evaluation, we are still interested in the improvement
that we can achieve by running multiple simulations concurrently.
Note that our strategies already exhaust a noticeable number of cores,
especially with respect to the mean calculation. Therefore, achieving
a runtime optimization requires a substantial number of cores at this

[November 7, 2017 at 14:12 – classicthesis version 4.2]

6.2 search space optimizations 53

point. There is no doubt that this strategy leads to a runtime improve-
ment when running numerous large scale simulations with more than
four cores. However, this requires tremendous calculation power. In
fact, running ten simulations that underlie the same conditions as our
previous experiments concurrently does not achieve a runtime opti-
mization when using the same hardware. This can be concluded from
Table 8.

Table 8: Shows the runtimes measured when self-stabilizing ten configura-
tions sequentially as well as concurrently in seconds using a 4-core
3.5 GHz CPU

n =

Execution 102 103 104 105 106

Sequentially 0.58 4.88 54 955 X

Concurrently 0.58 4.5 54 945 X

Since these results include both strategies that were previously con-
firmed to improve the runtime of the algorithm, we still get the in-
formation that implementing them at the same time improves the
performance even further.

6.2 search space optimizations

Currently running a simulation leads to randomly moving in the
configuration space. Doing so results in a search where we need to
hope that the simulation finds hard initial configurations. Because of
this, our results still exhibit a considerable spreading behavior as we
were able to discover in Section 6.1.3 while evaluating several cooling
schedules. Therefore, the last step before presenting the final results
requires minimizing the search space by eliminating configurations
that favor the convergence of the bsf-algorithm. Optimally, we want
to minimize the number of possible configurations to the point where
we can consistently find hard initial configurations. For discovering
parameter correlations in these configurations, we subsequently dedi-
cate a Section to each parameter. Section 6.2.1 analyzes how the most
influential parameter, the number of informed Nodes, affects the con-
vergence. After gaining those insights, we move to the number of
individual states in Section 6.2.2. Finally, based on previous results,
we also attempt to find correlations regarding the individual counter
values Tb and Tf in Section 6.2.3.

6.2.1 Informed vs. Uninformed Populations

The number of informed Nodes in a population represents a crucial
factor regarding the convergence of the bsf-algorithm. When start-
ing in an initial configuration where a few Nodes are informed, we
might experience the scenario where the population fails to agree on
the opinion propagated by the source leading to all agents to dis-

[November 7, 2017 at 14:12 – classicthesis version 4.2]

54 running the algorithm

agree at some point. We also investigated this case in Chapter 4. On
the other hand, informed populations where only a small fraction of
Nodes propagates wrong information are more likely to converge di-
rectly. However, we are unaware as to how informed a population
may be when searching for hard initial configurations. This is why
we execute the following independent experiments for gaining more
precise insights regarding this problem: before running a simulation,
we initialize the number of informed Nodes with progressively in-
creasing numbers i ∈ I = {11, n10 , 2n10 , ..., 9n10 }. Furthermore, we take
the mean over ten simulations for each quantity i ∈ I. Similarly to
Section 6.1.3, we consider Node populations ranging from 103 to 105

and do not change parameters within a given quantity of Nodes. The
most important step towards useful insights lies in how we generate
neighbor configurations as we completely pass on changing the num-
ber of informed Nodes. This way, we focus on exploring a search
space that is directly related to the respective fraction of informed
Nodes.

Figure 6: Shows the results determined by the simulation on the y-axis while
the x-axis shows the quantity of informed Nodes a population was
initialized with.

There is indeed a crucial difference regarding the convergence when
comparing uninformed to informed populations as we can see in
Figure 6. Configurations where less than half of the population is
informed appear to favor the convergence in case of smaller pop-
ulations. Furthermore, as soon as the number of informed Nodes
exceeds that fraction, we notice a steady increase in the number of
rounds our algorithm requires to converge. The increase stops after
informing too many Nodes as configurations tend to converge di-

1 This Node represents the Zealot

[November 7, 2017 at 14:12 – classicthesis version 4.2]

6.2 search space optimizations 55

rectly with higher probability. This situation changes when observing
larger populations. As long as the informed fraction remains below
50%, the simulated-annealing search discovers the hardest initial con-
figurations. Based on these experiments, there is no doubt that we
may limit the search space of our simulation to the interval that we
discovered to lead to the hardest initial configurations. Therefore, we
will not allow the fraction of informed Nodes to drop below 6n

10 or
exceed 9n

10 in case of n = 103 and n = 104 as this range led to the
hardest initial configurations to be found. Since we need to keep that
fraction within a different range with respect to the largest popula-
tion, we will not allow the fraction to be lower than n

10 or higher
than 5n

10 . By restricting the search space for a certain quantity, we will
attempt to find more precise correlations regarding the individual
number of states and counter values Tb and Tf in the following two
sections.

6.2.2 The Impact of State Shifting

We just showed that the informed fraction of Nodes plays a signif-
icant role regarding the convergence of the bsf-algorithm. To find
correlations with respect to the number of individual states among
a population, we will proceed similarly. Since our strategy for gen-
erating a neighbor configuration does not provide a good way for
initializing a population with a certain state combination as we do
not use a probability distribution, we will use a binomial distribu-
tion instead. We execute the following independent experiments for
discovering correlations between the fraction of informed Nodes and
the number of individual states: before running a simulation, we ini-
tialize the number of individual states corresponding to a binomial
distribution with probability of success p ∈ P = {0.1, 0.2, ..., 0.9}. We
once again compute the mean over ten simulations for each probabil-
ity of success p ∈ P. Furthermore, we restrict a given quantity to the
fraction of informed Nodes that turned out to result in the hardest
configurations. Similar to the previous section, we completely pass
on flipping states when generating a neighbor configuration. Figure
7 shows which probabilities lead to the hardest initial configurations
based on all insights that we gained from Section 6.2.1.

A logical consequence from restricting the fraction of informed
agents to what we determined to be the worst range is that we are
able to find harder configurations more consistently. Even though our
results still fluctuate, their range is considerably smaller than in Fig-
ure 6. Furthermore, the fact that the convergence time becomes even
worse in some cases represents another achievement. Knowing the
probability that leads to the worst configurations on average, we will
initialize the individual number of states corresponding to the respec-
tive probability in any future simulations. By doing so, our simulation
is more likely to find and self-stabilize hard initial configuration when
generating a neighbor configuration. Based on these insights, we will

[November 7, 2017 at 14:12 – classicthesis version 4.2]

56 running the algorithm

Figure 7: Shows the results determined by the simulation on the y-axis while
the x-axis shows the probability of success p that was used for
initializing a state combination.

attempt to find correlations regarding a Node’s counter values Tb and
Tf in the next section.

6.2.3 Boost and Freezing Duration Based Correlations

Moving on, we focus our attention to finding correlations regard-
ing a Node’s boost and freezing duration. In contrast to our strat-
egy for shifting the number of individual states, we already use a
binomial distribution for randomizing these values in each round of
a simulation. However, when generating a neighbor configuration,
the distribution requires a probability of success p. Finding corre-
lations regarding the quantity of p in relation to previous insights
is our last task before moving to the last section. The independent
experiments that we are going to execute for discovering these cor-
relations only differ in one aspect compared to the previous section.
This time, we do not only adjust the number of informed Nodes cor-
responding to the range that we determined in Section 6.2.1 but we
initialize a population with a state combination that we learned to
lead to the hardest initial configurations on average. Furthermore, we
once again rely on a binomial distribution with probability of success
p ∈ P = {0.1, 0.2, ..., 0.9} for initializing each Node’s boost duration
Tb and freezing duration Tf. The mean over ten simulations for each
quantity p ∈ P will serve as a measure regarding the convergence in
the respective duration combination. Note that adjusting these values
is not allowed during any simulation as we are interested in knowing
how the algorithm performs with respect to given boost and freezing

[November 7, 2017 at 14:12 – classicthesis version 4.2]

6.3 results 57

durations based on the binomial distribution. This will educate us
about the probability of success p that leads to the hardest initial con-
figurations on average. Figure 8 shows the impact of each probability
based on previous insights.

Figure 8: Shows the results determined by the simulation on the y-axis while
the x-axis shows the probability of success p that was used for
initializing a duration combination.

Unlike Figure 6 and Figure 7 where we were partially able to ob-
serve different behaviors in relation to different quantities, these re-
sults show noticeable similarities. Each population requires the high-
est number of rounds to converge when initialized with p > 0.5while
p = 0.9 appears to lead to the hardest initial configurations on aver-
age. We will consider these insights in the last section and randomize
the boost as well as the freezing duration with the probability that
favors the convergence the least.

6.3 results

After putting effort into the determination of parameters that look
optimal to the algorithm in Section 6.1 and searching for correlations
in hard initial configurations in the previous section, we finally move
to the results. Therefore, we will proceed by executing the following
independent experiments for the last time: we restrict the fraction
of informed Nodes, initialize the state combination and use proba-
bility p for randomizing each Node’s boost and freezing duration
corresponding to values that were previously determined to lead the
simulated-annealing search into finding the hardest initial configura-
tions on average. This condition applies in every single simulation
that we execute. Since our strategies are still sensitive to the number

[November 7, 2017 at 14:12 – classicthesis version 4.2]

58 running the algorithm

of Nodes k that change in each round of the simulation, we will test
different quantities. The data points in Figure 9 as well as the mean
values and standard deviations presented in Table 9 refer to the quan-
tity that resulted in the simulation that determined the hardest initial
configurations on average for the respective quantity of Nodes.

Figure 9: Shows the final results determined by the simulation on the y-axis
while the x-axis shows the quantity of the population.

These results show that the effort that we put into detecting correla-
tions considerably contributes to optimizing the search. We have not
only managed to reduce the standard deviation but to push the max-
imum number of rounds to even higher values in case of 103 and 104.
Also, all data points that we determined for the largest quantity now
reach values similar to the hardest configuration visualized in Figure
5. The most important information that we can conclude based on
these results is that any arbitrary configuration self-stabilizes in poly-
logarithmic runtime. Finally, it remains to conclude the results of this
thesis in the last chapter.

Table 9: Shows the mean values and standard deviations in relation to the
data point from 9

Population Mean Standard Deviation

103 61 4.26

104 95.7 6.23

105 118.4 3.31

[November 7, 2017 at 14:12 – classicthesis version 4.2]

Part VII

C O N C L U S I O N

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

7
C O N C L U S I O N

The intention of this thesis was to provide an extensive analysis of
the BSF-protocol for showing that the algorithm is capable of self-
stabilizing from any arbitrary configuration in O(logn) rounds. A the-
oretical investigation of the broadcast process, which is closely related
to the algorithm, has shown that we can bound the minimum number
of rounds by Ω(logn). Furthermore, an experimental analysis via the
randomized search heuristic simulated annealing was supposed to
provide more precise insights on the behavior and the convergence of
the algorithm. Determining parameters that look optimal to the pro-
tocol has shown that the algorithm exhibits high sensitivity regarding
the boosting state. In case the boosting period is too small, agents may
adjust their opinion too frequently. On the other hand, longer periods
have shown to be problematic as agents take too long to agree on an
information. As a result of these observations, setting the algorithms’
parameters l and k that are responsible for fixing the maximum num-
ber of rounds an agent may boost or be frozen to blog2 nc turned out
to be the best choice in terms of the convergence of the algorithm.
Running simulations for determining the starting temperature T0 re-
vealed that the number of rounds a neighbor configuration requires
to self-stabilize neither fluctuates within a given quantity of agents
nor shows noteworthy increases when self-stabilizing larger popula-
tions. For optimizing the simulation even further, we compared the
performance of a linear, exponential and logarithmic cooling sched-
ule. Our results show that the logarithmic schedule achieves supe-
rior results compared to the others as the schedule finds hard initial
configurations, on average, more consistently. Furthermore, we were
able to achieve substantial runtime improvements by exploiting multi-
threading strategies. After putting considerable effort in optimizing
the parameters of the simulated annealing, we showed existing cor-
relations in hard initial configurations that vary based on the size of
a population. When we considered the correlations we discovered in
our final results, the simulation was able to find hard initial configu-
rations a lot more consistently. Finally, our ultimate results confirmed
a convergence time of O(logn).

61

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

B I B L I O G R A P H Y

[1] Dan Alistarh, Rati Gelashvili, and Milan Vojnović. “Fast and Ex-
act Majority in Population Protocols.” In: Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing. PODC
’15. Donostia-San Sebastián, Spain: ACM, 2015, pp. 47–56. isbn:
978-1-4503-3617-8. doi: 10.1145/2767386.2767429. url: http:
//doi.acm.org/10.1145/2767386.2767429.

[2] Dana Angluin, James Aspnes, and David Eisenstat. “A simple
population protocol for fast robust approximate majority.” In:
Distributed Computing 21.2 (2008), pp. 87–102. issn: 1432-0452.
doi: 10.1007/s00446-008-0059-z. url: https://doi.org/10.
1007/s00446-008-0059-z.

[3] Lucas Boczkowski, Amos Korman, and Emanuele Natale. “Brief
Announcement: Self-stabilizing Clock Synchronization with 3-
bit Messages.” In: Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing. PODC ’16. Chicago, Illinois,
USA: ACM, 2016, pp. 207–209. isbn: 978-1-4503-3964-3. doi: 10.
1145/2933057.2933075.

[4] Keren Censor-Hillel, Bernhard Haeupler, Jonathan Kelner, and
Petar Maymounkov. “Global Computation in a Poorly Connected
World: Fast Rumor Spreading with No Dependence on Conduc-
tance.” In: Proceedings of the Forty-fourth Annual ACM Symposium
on Theory of Computing. STOC ’12. New York, New York, USA:
ACM, 2012, pp. 961–970. isbn: 978-1-4503-1245-5. doi: 10.1145/
2213977.2214064. url: http://doi.acm.org/10.1145/2213977.
2214064.

[5] E. G. Coffman, M. Elphick, and A. Shoshani. “System Dead-
locks.” In: ACM Comput. Surv. 3.2 (June 1971), pp. 67–78. issn:
0360-0300. doi: 10.1145/356586.356588.

[6] National Research Council et al. Catalyzing inquiry at the interface
of computing and biology. National Academies Press, 2006.

[7] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Lar-
son, Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug
Terry. “Epidemic Algorithms for Replicated Database Mainte-
nance.” In: Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing. PODC ’87. Vancouver, British
Columbia, Canada: ACM, 1987, pp. 1–12. isbn: 0-89791-239-X.
doi: 10.1145/41840.41841. url: http://doi.acm.org/10.
1145/41840.41841.

[8] Edsger W. Dijkstra. “A Note on Two Problems in Connexion
with Graphs.” In: Numer. Math. 1.1 (Dec. 1959), pp. 269–271.
issn: 0029-599X. doi: 10.1007/BF01386390. url: http://dx.
doi.org/10.1007/BF01386390.

63

[November 7, 2017 at 14:12 – classicthesis version 4.2]

64 Bibliography

[9] Edsger W. Dijkstra. “Self-stabilizing Systems in Spite of Dis-
tributed Control.” In: Commun. ACM 17.11 (Nov. 1974), pp. 643–
644. issn: 0001-0782. doi: 10.1145/361179.361202.

[10] Benjamin Doerr and Mahmoud Fouz. “Asymptotically Optimal
Randomized Rumor Spreading.” In: Automata, Languages and
Programming: 38th International Colloquium, ICALP 2011, Zurich,
Switzerland, July 4-8, 2011, Proceedings, Part II. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2011, pp. 502–513. isbn: 978-
3-642-22012-8. doi: 10.1007/978-3-642-22012-8_40.

[11] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas
Sauerwald, and Christian Scheideler. “Stabilizing Consensus
with the Power of Two Choices.” In: Proceedings of the Twenty-
third Annual ACM Symposium on Parallelism in Algorithms and
Architectures. SPAA ’11. San Jose, California, USA: ACM, 2011,
pp. 149–158. isbn: 978-1-4503-0743-7. doi: 10.1145/1989493.
1989516. url: http://doi.acm.org/10.1145/1989493.1989516.

[12] Shlomi Dolev and Ted Herman. Superstabilizing Protocols for Dy-
namic Distributed Systems. Tech. rep. 1997.

[13] Jennifer H Fewell. “Social insect networks.” In: Science 301.5641
(2003), pp. 1867–1870.

[14] Alan M. Frieze and Geoffrey R. Grimmett. “The shortest-path
problem for graphs with random arc-lengths.” In: Discrete Ap-
plied Mathematics 10 (1985), pp. 57–77.

[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-oriented Soft-
ware. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1995. isbn: 0-201-63361-2.

[16] Stuart Geman and Donald Geman. “Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images.” In: IEEE
Trans. Pattern Anal. Mach. Intell. 6.6 (Nov. 1984), pp. 721–741.
issn: 0162-8828. doi: 10.1109/TPAMI.1984.4767596. url: http:
//dx.doi.org/10.1109/TPAMI.1984.4767596.

[17] George Ruppeiner, Jacob Mørch Pedersen, and Peter Salamon.
“Ensemble approach to simulated annealing.” In: J. Phys. I France
1.4 (1991), pp. 455–470. doi: 10.1051/jp1:1991146.

[18] David E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. 1st. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1989. isbn: 0201157675.

[19] Bruce Hajek. “Cooling Schedules for Optimal Annealing.” In:
Math. Oper. Res. 13.2 (May 1988), pp. 311–329. issn: 0364-765X.
doi: 10.1287/moor.13.2.311. url: http://dx.doi.org/10.
1287/moor.13.2.311.

[20] Donald O. Hebb. The organization of behavior: A neuropsychologi-
cal theory. New York: Wiley, 1949. isbn: 0-8058-4300-0.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

Bibliography 65

[21] J. J. Hopfield. “Neurocomputing: Foundations of Research.” In:
ed. by James A. Anderson and Edward Rosenfeld. Cambridge,
MA, USA: MIT Press, 1988. Chap. Neural Networks and Physi-
cal Systems with Emergent Collective Computational Abilities,
pp. 457–464. isbn: 0-262-01097-6.

[22] Mads Kærn, Timothy C Elston, William J Blake, and James J
Collins. “Stochasticity in gene expression: from theories to phe-
notypes.” In: Nature Reviews Genetics 6.6 (2005), pp. 451–464.

[23] Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold
Vöcking. “Randomized Rumor Spreading.” In: 41th Annual Sym-
posium on Foundations of Computer Science (FOCS-00). IEEE Com-
puter Society. Redondo Beach, USA: IEEE, 2000, pp. 565–574.
isbn: 0-7695-0852-9.

[24] Nadav Kashtan and Uri Alon. “Spontaneous evolution of mod-
ularity and network motifs.” In: Proceedings of the National Academy
of Sciences 102.39 (2005), pp. 13773–13778. doi: doi:10.1073/
pnas.0503610102.

[25] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. “Op-
timization by simulated annealing.” In: science 220.4598 (1983),
pp. 671–680.

[26] Hiroaki Kitano. “Biological robustness.” In: Nature Reviews Ge-
netics 5.11 (2004), pp. 826–837.

[27] Donald E. Knuth. “Computer Programming as an Art.” In: Com-
munications of the ACM 17.12 (1974), pp. 667–673.

[28] Donald E. Knuth. The Art of Computer Programming, Volume 3:
(2Nd Ed.) Sorting and Searching. Redwood City, CA, USA: Ad-
dison Wesley Longman Publishing Co., Inc., 1998. isbn: 0-201-
89685-0.

[29] Joseph B Kruskal. “On the shortest spanning subtree of a graph
and the traveling salesman problem.” In: Proceedings of the Amer-
ican Mathematical society 7.1 (1956), pp. 48–50.

[30] Shay Kutten and Boaz Patt-Shamir. “Time-adaptive Self Stabi-
lization.” In: Proceedings of the Sixteenth Annual ACM Symposium
on Principles of Distributed Computing. PODC ’97. Santa Barbara,
California, USA: ACM, 1997, pp. 149–158. isbn: 0-89791-952-1.
doi: 10.1145/259380.259435. url: http://doi.acm.org/10.
1145/259380.259435.

[31] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a
Distributed System.” In: Commun. ACM 21.7 (July 1978), pp. 558–
565. issn: 0001-0782. doi: 10.1145/359545.359563.

[32] Leslie Lamport. “Solved Problems, Unsolved Problems and Non-
problems in Concurrency.” In: SIGOPS Oper. Syst. Rev. 19.4 (Oct.
1985), pp. 34–44. issn: 0163-5980. doi: 10.1145/858336.858339.
url: http://doi.acm.org/10.1145/858336.858339.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

66 Bibliography

[33] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzan-
tine Generals Problem.” In: ACM Trans. Program. Lang. Syst. 4.3
(July 1982), pp. 382–401. issn: 0164-0925. doi: 10.1145/357172.
357176. url: http://doi.acm.org/10.1145/357172.357176.

[34] Sharon Bertsch McGrayne. The theory that would not die: how
Bayes’ rule cracked the enigma code, hunted down Russian submarines,
& emerged triumphant from two centuries of controversy. Yale Uni-
versity Press, 2011.

[35] Saket Navlakha and Ziv Bar-Joseph. “Algorithms in nature: the
convergence of systems biology and computational thinking.”
In: Molecular Systems Biology 7.1 (2011). issn: 1744-4292. doi: 10.
1038/msb.2011.78.

[36] Yaghout Nourani and Bjarne Andresen. “A comparison of sim-
ulated annealing cooling strategies.” In: Journal of Physics A:
Mathematical and General 31.41 (1998), p. 8373.

[37] David Peleg. Distributed Computing: A Locality-sensitive Approach.
Philadelphia, PA, USA: Society for Industrial and Applied Math-
ematics, 2000. isbn: 0-89871-464-8.

[38] Nitzan Razin, Jean-Pierre Eckmann, and Ofer Feinerman. “Desert
ants achieve reliable recruitment across noisy interactions.” In:
Journal of the Royal Society Interface 10.82 (2013), p. 20130079.

[39] Jerome Howard Saltzer. “Traffic control in a multiplexed com-
puter system.” PhD thesis. Massachusetts Institute of Technol-
ogy, 1966.

[40] David JT Sumpter, Jens Krause, Richard James, Iain D Couzin,
and Ashley JW Ward. “Consensus decision making by fish.” In:
Current Biology 18.22 (2008), pp. 1773–1777.

[41] G. Varghese. SELF-STABILIZATION BY LOCAL CHECKING AND
CORRECTION. Tech. rep. Cambridge, MA, USA, 1992.

[November 7, 2017 at 14:12 – classicthesis version 4.2]

L I S T O F F I G U R E S

Figure 1 Shows the implementation’s class diagram 24
Figure 2 Shows a normal distribution around the mean

µ = 0 with standard deviation σ = 103 31
Figure 3 Shows a binomial distribution where t = 10

with probability of success p = 0.5 32
Figure 4 Shows the best-so-far-energies determined for

each cooling schedule. The y-axis shows the
BSFE while the x-axis shows the number of it-
erations. 50

Figure 5 Shows the best-so-far-energies measured when
considering a large variety of parameter com-
binations. The y-axis shows the BSFE while the
x-axis shows the corresponding cooling sched-
ule. 51

Figure 6 Shows the results determined by the simula-
tion on the y-axis while the x-axis shows the
quantity of informed Nodes a population was
initialized with. 54

Figure 7 Shows the results determined by the simula-
tion on the y-axis while the x-axis shows the
probability of success p that was used for ini-
tializing a state combination. 56

Figure 8 Shows the results determined by the simula-
tion on the y-axis while the x-axis shows the
probability of success p that was used for ini-
tializing a duration combination. 57

Figure 9 Shows the final results determined by the sim-
ulation on the y-axis while the x-axis shows
the quantity of the population. 58

67

[November 7, 2017 at 14:12 – classicthesis version 4.2]

L I S T O F TA B L E S

Table 1 Lists and describes a Node’s properties 25
Table 2 Lists and describes a Graph’s properties 26
Table 3 Shows the mean values related to experiments

with l = k where each result is based on 102

experiments 46
Table 4 Shows the mean values related to experiments

with l 6= k where each result is based on 102

experiments 47
Table 5 Shows the mean values of |∆s| where each re-

sult is based on one simulation running for 102

rounds 48
Table 6 Shows the mean values and standard devia-

tions in relation to the data points from Figure
5 51

Table 7 Shows the runtimes measured for each multi-
threading strategy in seconds using a 4-core
3.5 GHz CPU 52

Table 8 Shows the runtimes measured when self-stabilizing
ten configurations sequentially as well as con-
currently in seconds using a 4-core 3.5 GHz
CPU 53

Table 9 Shows the mean values and standard devia-
tions in relation to the data point from 9 58

68

[November 7, 2017 at 14:12 – classicthesis version 4.2]

L I S T I N G S

Listing 1 Shows a multi-threaded bsf-algorithm imple-
mentation 37

Listing 2 Shows a multi-threaded neighbor configuration
generation 38

Listing 3 Shows a multi-threaded mean calculation 39
Listing 4 Shows the adjustments required in Algorithm

3 40
Listing 5 Shows how to run each simulation in a thread 40

69

[November 7, 2017 at 14:12 – classicthesis version 4.2]

[November 7, 2017 at 14:12 – classicthesis version 4.2]

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

[November 7, 2017 at 14:12 – classicthesis version 4.2]

