
STL SYSTEMTECHNIKLABOR

Development of Voice User Interfaces and their
Impact on the User Experience of Mobile
Applications

Kevin A. Münch

Technical Report – STL-TR-2017-03 – ISSN 2364-7167

stl.htwsaar.de

https://stl.htwsaar.de/
https://stl.htwsaar.de

Technische Berichte des Systemtechniklabors (STL) der htw saar
Technical Reports of the System Technology Lab (STL) at htw saar
ISSN 2364-7167

Kevin A. Münch: Development of Voice User Interfaces and their Impact on the User Experience of Mobile
Applications
Technical report id: STL-TR-2017-03

First published: October 2017
Last revision: October 2017
Internal review: Ramon Mata-Toledo, André Miede

For the most recent version of this report see: https://stl.htwsaar.de/

Title image source: Flavio Takemoto (flaivoloka), http://www.freeimages.com/photo/1213712

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. http://creativecommons.org/licenses/by-nc-nd/4.0/

htw saar – Hochschule für Technik und Wirtschaft des Saarlandes (University of Applied Sciences)
Fakultät für Ingenieurwissenschaften (School of Engineering)
STL – Systemtechniklabor (System Technology Lab)
Prof. Dr.-Ing. André Miede (andre.miede@htwsaar.de)
Goebenstraße 40
66117 Saarbrücken, Germany
https://stl.htwsaar.de

https://stl.htwsaar.de/
http://www.freeimages.com/photo/1213712
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://stl.htwsaar.de

Master’s Thesis

For the degree of

Master of Science (M. Sc.)

At University of Applied Sciences, Saarbrücken

And in cooperation with James Madison University

In the major Applied Computer Sciences

At Fakultät für Ingenieurwissenschaften

Development of voice user interfaces and their impact on the
user experience of mobile applications

Submitted by

Kevin Alexander Münch

curated and surveyed by

Prof. Dr.-Ing. André Miede

Prof. Ramon Mata-Toledo, Ph. D.

Harrisonburg, VA, 09/30/2017

Statement of Authorship

I hereby declare that I am the sole author of this master thesis and that I have not used any
sources other than those listed in the bibliography and identified as references. I further
declare that I have not submitted this thesis at any other institution in order to obtain a
degree.

Harrisonburg, VA, 09/30/2017

Kevin Alexander Münch

iii

Abstract

Developing voice user interfaces is a complex process that requires steps to accept text
as input, process this input and synthesizing an adequate output. Understanding the
meaning of the vocal words and generating an answer is the key part of this process. It is
handled by a dialog manager. The dialogs that the system creates must be designed in a
way that the user can accept it easily. Otherwise, the cognitive load is too high for most
users to interact with the interface. However, in hands-free situations, visually distracted
situations or for disabled people voice user interfaces help users to interact with the system
and are therefore in special interest of the current software development processes.

There are several ways to design dialogs and the interface in a way that the user can
easily use them. The dialogs need to be kept simple and structured well, list should be
filtered and kept short. The design of the interface can combine visual and audible parts
to help the user keeping track of the data. Using more than one modality is one of the
easiest ways to create a user interface which requires little cognitive load. This solution is
known as multimodal interface.

This thesis explains these rules by example. Therefore, an Android application called
TaleTime is developed. This application lets the user experience interactive fiction. Stories
are read out chapter by chapter. After each chapter, the user can decide how to the plot of
the story goes on. This can either be done by tapping buttons on a screen or using speech
recognition. Dialogs must be kept simple because the target audience of this application
are young children. The development process is documented and the design of dialogs
can be seen in example. This includes example dialogs, flow diagrams and the concrete
wording of the dialogs. In addition, it is explained how a simple dialog manager can work.
Visual component are used to keep the cognitive load low if the user missed the auditory
output of the voice user interface.

This thesis summarizes existing literature and collects best practices to develop voice
user interfaces. Additionally, other types of user interfaces and typical use cases of voice
user interfaces are mentioned as well. These best practices are then applied to the example
of the development of the voice user interface for TaleTime.

v

Great design simplifies a very complicated world.

— Platon Antoniou

Acknowledgments

First, I would like to thank my thesis advisor Prof. Dr.-Ing. André Miede of the Fakultät
für Ingenieurwissenschaften at Hochschule für Technik und Wirtschaft des Saarlandes.
Even that Prof. Miede was in Germany during the work on the thesis, he helped me
whenever I ran into a trouble spot or had a question about my research or writing. He
consistently allowed this paper to be my own work, but steered me in the right direction
whenever he thought I needed it.

I would also like to acknowledge Prof. Ramon Mata-Toledo, Ph.D. of the Department
of Computer Science at James Madison University as the second reader of this thesis and
local advisor during the work on this thesis. I am gratefully indebted for his very valuable
comments on this thesis.

Furthermore, I would like to acknowledge Prof. Steven Frysinger, Ph.D. of the Depart-
ment of Computer Science James Madison University who set up the contact and made it
possible for me to study in the US.

In addition, I would like to thank the students and their advisors from htw Saar and
Saarland’s university for art and design who worked on the application (TaleTime) as
their project work before and during the research and the work on this thesis. Without
their passionate participation and input, this project could not have had such a successful
result.

I would also like to acknowledge Sebastian Düppre as second reader of this thesis, and
I am gratefully indebted to his for his very valuable comments on this thesis.

Finally, I must express my very profound gratitude to my parents and to my girlfriend
for providing me with unfailing support and continuous encouragement throughout my
years of study and through the process of researching and writing this thesis. This accom-
plishment would not have been possible without them. Thank you.

Kevin Alexander Münch

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem description . 2
1.3 Thesis structure . 3

2 Background 5
2.1 User interfaces and user experience . 5

2.1.1 Types of user interfaces . 5
2.1.2 User experience . 7

2.2 Multimodal interfaces . 8
2.2.1 Multimodality . 9
2.2.2 Usage to lower cognitive load . 11
2.2.3 Designing for mobile devices . 12

3 Conversational Design 17
3.1 Linguistic basics of conversations . 21
3.2 Turn taking . 25
3.3 Avatars . 26
3.4 Chatbots and personalized assistants . 27
3.5 Impact to the user experience . 28

4 Design of voice user interfaces 29
4.1 Requirements analysis . 29
4.2 High level dialog design . 34
4.3 Detailed dialog design . 39

4.3.1 User confirmations . 41
4.3.2 Stop detection . 42
4.3.3 Helping the user . 43
4.3.4 Error handling . 44
4.3.5 Voices and intonations . 46

5 Technological design 49
5.1 Speech recognition . 50

5.1.1 General technologies . 50
5.1.2 Comparison of existing speech recognition software 53

5.2 Natural language understanding . 56
5.3 Dialog Management . 57

5.3.1 Finite state based . 58
5.3.2 Frame based . 58
5.3.3 Agent based . 59
5.3.4 Plan based . 60

5.4 Speech synthesis . 61
5.4.1 Methodology . 61
5.4.2 Intonation . 62

ix

5.5 Summary . 63

6 Implementation 65
6.1 Existing prototype . 65

6.1.1 Used technologies . 68
6.1.2 Open tasks . 68

6.2 Requirements definition . 69
6.3 Definition of grammar . 71
6.4 Development . 73

6.4.1 Technological basics . 74
6.4.2 Architecture . 75
6.4.3 Components . 76
6.4.4 Open problems . 83

6.5 Summary . 84

7 Conclusion 85

Bibliography 87

List of Figures 97

List of Tables 97

Listings 97

Abbreviations 99

A package.json of the TaleTime project 105

B English grammar file for the TaleTime VUI 107

C Results of Google Speech API as JSON 111

D Results of Microsoft’s Speech API as JSON 113

x

1 Introduction

The development of voice user interfaces (VUI) is a complex process. It includes many
steps and requires a lot of work. This thesis therefore explains the process and gives inside
information about how VUIs can successfully be developed.

Besides a description of the necessary development tasks, this thesis also includes an
example for the development of a VUI. This example exists as an application initially
developed by htw Saar and is described in Chapter 6.

1.1 Motivation

In the past few years, the use of VUIs has been on the rise. For a long time, VUIs were
only the interest of researchers and developers. The reason for this is because VUIs are a
good, usable alternative to graphical user interfaces (GUI). The main reason why people
tend to use their voice instead of a keyboard is because it is a more natural form of input.
Humans are used to conversations. They use their voice every day to communicate. In
addition, the usage of spoken language is highly perfected. Although scientists are not
exactly sure about when humans began to speak and develop a language, it is assumed
that they started at least 100,000 years ago [58]. Compared to written language, this is a
very long time. Humans started writing approximately 5000 years ago [28]. This proves,
that humans are used to spoken language and they were able to learn it a long time ago.
Almost all humans all over the world are able to speak. Although most people also know
how to express themselves using written language, the number of people who know how
to write is still only at 85% [113]. As a result of these statistics, it is easier to see why people
prefer speaking as a means to communicate.

However, when interacting with a computer the most common way to enter data is via
the keyboard. The keyboard was invented for using it with typewriters in 1868 [52]. Even
if this also seems to be a long time ago, many people are still not used to the usage of a
keyboard or feel uncomfortable using it especially when writing long texts. This is another
reason where VUIs can be helpful. A VUI accepts a human’s voice, which everyone is
used to, as input. This obviously eliminates the use of keyboards and increases the amount
of input because it is a more natural way to communicate. Also, it helps young children
to interact with a VUI even if they do not know how to use a keyboard or write yet. Due
to the increase in use of VUIs, it is very important to create them with the highest quality
possible. If users begin to struggle using these interfaces, they quickly get disappointed
and will avoid their use. This thesis also summarizes ways to keep the quality of VUIs
high, so users feel confident in using them.

Besides the more natural and easier way to input data as a main argument to use VUIs,
there are other reasons why the development of VUIs is an important subject of research.
There are situations where users cannot use their hands to use a keyboard. The most
popular example for this situation is having the need to text or memo while driving. With
VUIs people can simply dictate what they want to achieve instead of using touch based
input methods. Other examples show that the usage of a VUI instead of touch based input
methods can increase their usability. One of these examples is the usage of a smartphone
application to cook. Users can talk to their phone while using their hands to cut, knead or

1

1 Introduction

accomplish other tasks of the cooking process. Giving a user the opportunity to interact
with the phones applications using his voice increases the user experience enormously.
The user does not have to stop working and can accomplish multiple tasks at once.

The usage of the voice also helps expressing emotions. Although GUIs can use different
forms of highlighting to indicate the importance of certain pieces of text, voice can only
use the intonation to indicate different meanings. This is still part of research, as the
synthesis of voices expressing emotions is a tough challenge. However, it opens a huge
variety of possibilities to express data in a more detailed way. Using emphatic voices,
the method of input and output carries not only the information described by the words
themselves but the importance or urgency that the speaker gives to the message [90].

In combination with recent achievements in technology and especially in the field of
artificial intelligence, VUIs have become more usable. Another reason why the VUIs are
also more popular is due to smartphones which provide a speaker and also a microphone;
the main components needed to create a VUI. Moreover, they are widely used today. In
addition, most phones sold today provide enough processing power to make VUIs widely
usable. In fact, 65% of the phones sold in 2015 provide the ability to use virtual assistants
[74].

There are also a few negative aspects that will be discussed in section 2.1.1. This includes
the usage of VUIs in public spaces and to enter private data. However, VUIs will only
be used if the quality of dialog is high enough. This thesis concentrates on theories that
help developers keeping the quality of a conversation high. One of the key aspects of
a good VUI is natural language understanding (NLU). Especially through the progress
in the research regarding artificial intelligence the quality of NLU was highly increased.
Based on this fact and the previously mentioned fact that smartphones are now widely
used, the usage of VUIs is increasing heavily. Smart watches and the digital interaction in
cars and other products pushing the usage of VUIs as well. As a result, users are trying
to use VUIs in all different situations now. Unfortunately, the management of dialogues
is still often not very helpful. Keeping track of previously mentioned facts and creating a
conversation based on this knowledge is often not possible for many applications. This
thesis therefore covers methods to build more conversational interfaces also as methods
that help to develop highly useful VUIs. These topics are important, because the usage of
VUIs will increase in the future as well.

1.2 Problem description

This thesis addresses two main issues. First, it summarizes the existing literature con-
cerning the creation of usable voice interfaces. Therefore, only the best practices will be
described here. Since the development of VUIs started in the 1960s and became very
popular in the 1990s, the methodologies have changed over time. Because of this reason,
this thesis mainly covers modern topics. These changed because of the rise of personal
assistants used on smartphones and on devices for connected homes such as Amazon’s
Echo or Google’s Home. These assistants offer more functionalities to build VUIs than
older devices. Therefore, different workflows are needed which requires to include the
creation of fluent and useful dialogs. Dialogs must kept simple because users can only
handle a certain amount of information, especially not if only heard. Designers use flow
diagrams and example dialogs as a first step of the design process. Then, more technical
problems like the usage of pauses will be discussed as part of this work. Pauses are very
important in a conversation. They may not only indicate that the speaker has finished
speaking but also give the participants of a conversation more time to understand the
given information. Moreover, pauses influence the implied meanings of a conversations.

2

1.3 Thesis structure

Studies have shown, that different lengths of pauses can influence the emotions, partici-
pants of a conversation may have [26]. This needs to be considered while creating a VUI
and will be discussed in section 4.3.5.

Secondly, this thesis considers multimodal interfaces. With the rise of smartphones and
similar devices, multimodal interfaces are becoming very common. Smartphones include
a screen, so data can be presented and altered using the screen (GUI). In addition, Smart-
phones contain a speaker and a microphone through which data also can be displayed and
entered, respectively (VUI). So, it is important to make sure that users can interact as easy
and as intuitive with these two types of interfaces. This thesis considers ways to reduce
the cognitive load for the user through multimodal interfaces and suggests guidelines to
create devices where both the GUI and VUI work together well.

The most important part of a VUI is the creation of fluent conversations. Therefore, the
VUI needs to keep information about what has been said. That is, it needs to keep a history.
Human conversations are usually based on such histories. Each participant remembers
what was said earlier, at least for a certain time. This is what the VUI also needs to be
able to do. There are multiple strategies on how to keep track of the information already
given. This thesis will try to present the most recent aspect of this important issue. It
is very critical to manage the given information, because people use different words to
refer to what was said. These can be pronouns such as he, she or it to refer to people
mentioned before, but there are of course many other possibilities. Often, places and dates
are replaced by other words. The VUI system must be able to recognize and associate
them with the correct information in the same way humans do it. If it is unclear, which
piece of information was mentioned, the VUI must be able to figure that situation out and
disambiguate it by asking the user for clarification. Disambiguation is a very important
part of a conversation. It is used very often in human conversations and helps to let the
VUI seem more confident. The methodologies used to keep track of the system’s states
will be described in section 5.3. This is the core of the thesis. These methodologies will
also be used while development in a simplified version.

Although these are the main topics of the thesis, the development of VUIs covers many
more topics such as the voice recognition itself, NLU or the synthesis of speech. These
topics will not be covered in detail by this thesis. However, some of their main ideas will
be described briefly and some references will be given for the interested reader.

1.3 Thesis structure

This thesis is structured in seven chapters. These chapters follow the workflow of the
development of VUIs. After the introduction, Chapter 2 describes all background infor-
mation needed to understand the context of VUIs. This includes an overview over user
interfaces and an explanation of the user experience in general. Furthermore, the term of
multimodality is explained because VUIs are often used in a multimodal context. Chapter
3 describes the the basics of conversations. This chapter reviews linguistic basics as well
as turn taking strategies. In addition, typical use cases of VUIs such as chatbots and per-
sonal assistant are described. The development process of VUIs is described in Chapter
4. It sequentially describes all steps in a typical development process starting from the
requirement analysis through the detailed dialog design. Whereas Chapter 4 describes
the design of VUIs, Chapter 5 gives some technological background about the underlying
methodologies. Each distinct part of a typical VUI system is described from a technical
point of view here. Chapter 6 describes the development work done during this thesis. It
documents the implementation and gives more information about how the technologies
can be applied. Finally, Chapter 7 summarizes the whole work and gives a final overview.

3

2 Background

This chapter introduces the reader to the work of this thesis. It explains the basics regard-
ing user interfaces. This knowledge is necessary to understand why VUIs are needed and
what typical use cases can look like. Furthermore, this chapter explains multimodality
and especially, how interfaces can be combined in a useful way.

2.1 User interfaces and user experience

This chapter will set the user up with general knowledge about user interfaces. This is
important, because VUIs are often used in combination with other interfaces (multimodal-
ity). Additionally, this section shortly explains the difference between a user interface and
user experience.

2.1.1 Types of user interfaces

This section gives an overview about the types of user interfaces currently available. This
thesis main concern is about VUIs, but because all user interfaces have weaknesses, it is
important to know what other kinds of user interfaces exists. This is especially relevant,
because different types of user interfaces can be combined. The resulting interface is called
multimodal interface and is explained in more detail in section 2.2.

There are three main groups of user interfaces: Visual or graphical user interfaces (both
abbreviated with GUI), VUIs and gesture based user interfaces. This chapter explains the
basics of all of them.

Visual user interfaces

Visual user interfaces, often also called GUIs, are the most popular types of interfaces.
They rely on a screen, which is used as the primary output interface. Today, screens often
offer touch functionalities. This enabled the user to directly alter the data on the screen.
Older versions of GUIs needed another form of input. This is usually a keyboard and /
or a mouse.

There are different versions of GUIs. First, there is the usual GUI which interacts with
the user through touch or mouse and keyboard. The key elements are windows, buttons,
text and icons that can be altered directly by interacting with them.

Then, there are command line interfaces which are only based on text. Those were the
first versions of visual user interfaces that use a screen. The user cannot click on icons
or use windows, the only way of manipulating data is to use commands typed via a
keyboard. Especially for inexperienced users, graphical user interfaces are easier to use.
They are more vivid. However, text based command line interfaces are still popular. They
are easier to develop and sometimes, depending on the use case, faster to use than GUIs.
There are guidelines, which explain when to use which interface [78].

The third kind of visual interfaces are menu driven interfaces. They can offer graphical
symbols but they do not allow the user to freely alter data. In most cases, they offer an
entry of menu items which the user can select from using physical buttons or touch. A

5

2 Background

popular use case are automatic teller machines (ATM). They offer only a few functionali-
ties. The user can only make selections on the options available and no others. Limiting
the possibilities of input results in higher security. Menu driven interfaces can be seen as a
mix of command line interfaces and graphical user interfaces. They seem to be graphical
and can display icons, text and color but they only offer a certain number of commands
which are similar to command line interfaces [29].

Voice user interfaces

VUIs interact with the user by accepting the voice as input and responding with synthe-
sized or prerecorded voice through a speaker. These kinds of user interfaces can therefore
be used for both input and output. Since VUIs are the main topic of this work, they will
not be explained in detail in this chapter. However, the main reason to use a VUI instead
of another interface is that it is a better option in certain situations. Those include situa-
tions which only have limited space for a keyboard or limited space on the screen itself.
Furthermore, VUIs can help creating interfaces for disabled users. Sometimes, when the
interaction requires the input of long texts, most users prefer speech as an input method
because speech is always faster than typing on a keyboard. Lately, there are many situ-
ations where users cannot be distracted or are limited in the use of their hands or their
eyes. Examples are while driving, cooking or doing sports [98].

Gesture based interfaces

This kind of interfaces can recognize the movements or gestures of the user. Compared
to other types of interfaces, gesture based interfaces are often used for input only instead
of both input and output. This is the case because gestures can be recognized easily with
a camera, but creating gestures requires a much more complex system. However, the field
of robotics is still very interested in creating and using gestures as an output system. Also,
gestures are important for multimodal applications which use an avatar [90].

Using gestures as an input method can simplify the interaction for the user. This is
the case, because designers can use knowledge that the user already has. With gestures,
the content directly becomes the object to be controlled. The designer can borrow one-
to-one interactions from the real life to interact with the interface. For example, moving
clockwise can be used to go forward, whereas moving counter-clockwise can be used to go
backwards. Most users would expect a gesture to do exactly this. Also, designers should
apply physics to objects. Most users interact with virtual objects in the same way as if the
object would be physical. A good example is a list. To create a new list item, there has
to be more space. Designers can use this fact to create a gesture that virtually separates
list items to create more space for a new item. Gestures are usually used as shortcuts.
They are simple and can only express simple interactions. Furthermore, designers should
be careful to not implement too many gestures as the user can easily get confused. This
is especially the case if the recognition systems quality is not high enough to separate
between nuances of different gestures. Not interpreting the correct gesture can annoy the
user quickly [16].

Other interfaces

The three types of interfaces are most important and popular ones, but naturally there
are many more types of interfaces.

6

2.1 User interfaces and user experience

One of these interfaces are tactile interfaces. They are usually used as an output system.
Often, their main function is to warn users. This can happen in cars, either to prevent the
driver from falling asleep, when the driver hits the outer boundary line of the road or if
the driver wants to swap lines and does not see another car in the blind spot. Also, aircraft
manufacturer make use of this system to alert pilots about a possible stall [98].

2.1.2 User experience

Apart from the term user interface (UI), there is another term often used in this context.
This term is the user experience (UX) which describes the whole experience a user has
while making use of an application. As Jan Weddehage points out, “UI is the vehicle, but
UX should drive“ [117], the user experience is the concept of how to convey the content
to the user but the UI is the method how this is done. In conclusion, this means that the
UX does not make use of a certain UI. Which UI should be used depends on what the UX
designer decides is best.

Nevertheless, it should be mentioned that the term UX is often used with different
meanings. Sometimes, UI and UX are mistakenly used interchangeable. There are many
different definitions of UX. The major ones are the following:

• A consequence of a user’s internal state (predispositions, expectations, needs, mo-
tivation, mood, etc.), the characteristics of the designed system (e.g. complexity,
purpose, usability, functionality, etc.) and the context (or the environment) within
which the interaction occurs (e.g. organizational / social setting, meaningfulness of
the activity, willingness of use, etc.) [48].

• A set of material rendered by a user agent which may be perceived by a user and
with which interaction may be possible [116].

• Comprehends all aspects of digital products and services that users experience di-
rectly - and perceive, learn, and use - including products’ form, behavior, and con-
tent, but also encompassing users’ broader brand experience and the response that
experience evokes in them. Key factors contributing to the quality of users’ experi-
ence of products are learnability, usability, usefulness, and aesthetic appeal [32].

• A person’s perceptions and responses that result from the use or anticipated use of
a product, system or service [106].

The definitions given above show that there are many different opinions about the
meaning of the term user experience. The website allaboutux.org [114] gives an overview
of over 27 different definitions.

However, most of these definitions share similarities. The definitions described above
show, that user experience is not only about a certain way of designing the user interface.
It is also about understanding the user’s needs and the users feelings. This results in
guidelines that can be completely different than the usual design guidelines used by
a company. User experience also includes that the user, in most cases also a customer,
experiences a story, not only a simple website. The brand, the design, the language, the
images but also the clarity and the learnability must fit together and create a pleasant
experience for the user.

It is obvious, that the customer experience does not only include the design of the GUI,
but of all interfaces used. As described in section 2.2 this can be a combination of multiple
UIs. Especially when multiple user interfaces are used, it is important that all together
create a joint user experience. Therefore, this also includes the design of the VUI. The way,

7

2 Background

a device talks to a user or even the way internal data is used for suggestions can influence
the user experience with a particular brand.

2.2 Multimodal interfaces

Interfaces, which use more than one of the user interfaces described in section 2.1.1 are
called multimodal interfaces. Today, many applications are multimodal. The main reason
to use more than one interface is due to the weaknesses of the primary interface. A good
example for this are car manufacturers. In cars, displays are widely used today. It is also
no technical challenge, to use touchscreens or knobs to control the functions of a car.
However, if a user, most likely the driver, wants to use the interface, he or she has to look
at the touchscreen or at the knob to see whats going on. Therefore, a simplification of user
interfaces used in cars can be seen in the last few years. This was necessary, because the
functionalities cars offer are growing rapidly and can be distracting for drivers.

Figure 2.1: Visual interface of a multimodal car
entertainment system

In 2015, Ryu et al. developed a multi-
modal interface for cars to find out which
combination of interfaces distracts drivers
the least [60]. Therefore, they combined a
voice user interface, a visual interface with
touch functionality and knobs for addi-
tional control and also added an interface
for gestures as an input. They also found
out that American and Chinese users pre-
fer natural language systems for speech
rather than command and control systems
while driving. To keep the system simple
and not too distracting, they subtle com-
bined the interfaces so that they compen-
sate the weaknesses of other interfaces. For
example, all major functionalities can be
triggered using speech. The weakness with this system is that the user cannot really
keep track of the state of the application. This general weakness is even worse while driv-
ing, because the user should concentrate on driving, not on the state of the application.
Hence, Ryu et al. use the display to keep the user updated. This is also dangerous for the
driver, because a display can show detailed information which takes a long time to be
understood. In the cited paper, two seconds are defined as a dangerous distraction time.
They also noted, that if there is detailed content on the screen, two seconds are a very
short amount of time to understand the amount of data. Ryu et al. therefore decided, to
keep the displayed menu simple. Their result can be seen in figure 2.1. They achieved this
simple design by using a layered design with symbols and sparse use of text. Addition-
ally, they decided to color code the screen. The user can quickly figure out in which state
the application currently is by simply recognizing the color. Also, they kept the gestures
simple. Only four gestures were implemented. This has the advantage that the user does
not have to learn many new ways to interact with the application, but also makes it easier
for the application to understand the gesture. Especially in the car, error handling can be
difficult. This is because the application has to tell the user first what went wrong, the
user has to understand that and figure out a solution to fix the situation. If the application
misunderstands a gesture, it can be complicated for the user to understand that some-
thing went wrong. This distracts the user enough to create a dangerous situation. In the
described paper, Ryu et al. suggest to combine multiple interfaces in a smart way to keep

8

2.2 Multimodal interfaces

distraction low and still please the user.
The automobile sector is one of the major industries pushing the development of VUIs.

This is because entertainment functions in cars are growing rapidly. Also, the dangers of
distraction from the view to the road are very obvious, so customers are actually willing
to pay more for features like speech recognition in the car. Because of this reason, all major
car manufacturers develop multimodal interfaces for their vehicles. Additionally, major
technology companies try to port their systems for mobile devices to cars [35] [5]. This
pushes VUIs used on smartphones as well, because it is usually the same system used in
the car and on the phone.

Smartphones and personal assistants are the second major industry pushing the de-
velopment of VUIs. All of them have in common that there are particular situations that
require different inputs for multimodal applications using also a VUI. Smartphones are
used all the time, so there are more use cases. However, not all of these situations match
use cases for every single users. A helpful example would be a cooking application [36].
The user must be able to browse recipes using the display before start cooking. While
preparing and cooking, the user most likely prefers to not use the screen to get the next
required step. This is especially the case, when the user does not only has to look, but also
provide input or scroll to see the next step. During the cooking process, many users do
not have clean fingers or cannot stop doing what is currently required. This is only one
of many use cases, where another form of input can help. In this particular use case, the
smartphone can either recognize a gesture or use a VUI to communicate with the user.

Multimodal interfaces are important for this thesis, because they often use VUIs to com-
pensate the weaknesses of other interfaces. However, VUIs have weaknesses of their own
which are described in Chapter 4. For example, long lists cannot be presented well using
speech synthesis. Therefore, other interfaces should be used. Furthermore, multimodal
interfaces often provide uses for today’s applications using VUIs. This is the case, because
VUIs still have a high error rate. To compensate this, application designers often include
an alternative way of presentation and / or input. This chapter first explains the term
multimodality in more detail. Then, methods are shown of when to use multimodal in-
terfaces. This chapter also includes helpful information about which interface to use for
which type of content.

2.2.1 Multimodality

The term multimodality describes the fact, that there is more than one interface that can be
used by the user. Multimodality does not limit the number of user interfaces but generally
are presented using only two different interfaces. Using more than two UIs normally
seems to be too much to handle and distracting for most users.

There are two main groups of multimodal interfaces. The first one covers a combination
of a variety of input methods, such as speech, touch, pen, gestures or body movements.
This first group is the most popular. This is because there are usually problems when
entering data into a device. There are situations that require a different form of input, for
example hands-free situations.Hands-free situations are situations, in which the user is
unable to use her / his hands. The second group of multimodal interfaces covers com-
binations of output systems. They are rarely used combined with the first group but are
starting to become more popular, too. Often, the combination of VUIs and GUIs is due to
their positive synergistic effects, redundancy and an increased bandwidth of information
transfer. Also, it is said to improve the mapping between the communication medium and
the content [98]. Multimodal interfaces also help to support time-sharing and attention
management in many different situations [10] [50] [66] [105] [84].

Good multimodal interfaces should consider the CARE properties [115]:

9

2 Background

• Complementary

Ideally, all used user interfaces must work together efficiently. It should be possible
to use all user interfaces simultaneously. This is often accomplished by using differ-
ent interfaces for input and output. The user interfaces must support each other and
cannot use completely different styles or functionalities. Otherwise, the cognitive
load is too high for the user and, as a result, the user gets distracted and confused.
In the worst case, the user stops using the application.

• Assignment

It must be clear which UIs the user is currently interacting with. There are different
ways of how a user interfaces can be selected. In some situations, only one interface
is available. There are also differences in how the active user interface can be selected.
Sometimes, the application chooses an interface, in other situations the user selects
the currently active user interface. In all kinds of situations, it must be clear which
the currently active interfaces are.

• Redundancy

A big advantage of multimodal interfaces is that information can be show redundant.
This should be done carefully. However, in some situations it can be required to
display data in a redundant way. VUIs for example are very volatile when it comes
to the display of information. Therefore, important information should be shown
in redundant ways. As a result, the user can still perceive the information without
performing an extra action even if he / she missed it in the first place. If information
is shown in a redundant way, it must be made sure to show the information only in
the same temporal window. This meets also the requirements of the complementary
property.

• Equivalence

This property describes the ability to accomplish any task by using any interface.
It is often difficult to meet this requirement and it depends on the situation, if it is
important to the user experience to support it. The user should be able to choose
from different interfaces if they are offered.

The CARE properties do not have to be met, but they help creating usable, multimodal
interfaces.

In case of multimodal interfaces, “The process of integrating information from various
input modalities and combining them into a complete command is called multimodal
fusion”. The opposite, a multimodal system that disaggregates data on multiple interfaces
is called multimodal fission [21]. Usually, a well-designed multimodal system aims for
multimodal fusion regarding both the input and the output interfaces.

Moreover, there are many research papers considering the use of multimodal UX en-
gines which handle the states of more than one UI at the same time. Those research papers
aim to obtain multimodal fusion. Multimodal fusion can be seen as an additional layer
between the UI and the application itself. One research that considers this aspect is the
research conducted by Jinwoo Kim, Jae Hong Ryu and Tae Man Han who suggest a new
system to handle multiple UIs in in-car-based computer system [60]. Research in this
field is required because car manufacturers have still not found a good solution for a
non-distracting UI. As they ascertained, the trend goes towards non-touch based systems
because they distract the user less than touch-based systems.

The system of Kim et al. can handle four different UIs. There is an interface for touch,
voice, gestures and knobs. The result of their work is a multimodal UX engine which

10

2.2 Multimodal interfaces

behaves as a single interface to the application level but can handle all interfaces separately.
It can also be multitasking. They tested the system in a special laboratory to measure the
distraction of the driver from the street with their system combined to common touch
based systems. The result shows, that the average time of distraction has decreased using
the system proposed from Kim et al. As a result, the system would possibly reduce crashes
in real cars.

As shown through this example, multimodality helps to increase the UX. It can prevent
the user from too many distractions while increasing the amount of information delivered
to the user (or to the customer). These are the main goals that can be achieved using
multimodal interfaces.

2.2.2 Usage to lower cognitive load

In most use cases, applications are built to help solving a problem. However, the user
still needs to concentrate and control the application using an interface. The degree of
the concentration required to do this is known as cognitive load [88]. Sometimes, the
terms cognitive factor or cognitive or mental effort are also used [67] [30]. Since these
terms are generally used interchangeable, only the term cognitive load will be used in this
document.

Due to the design of a user interface, the interaction with an application can cause
high cognitive load. This happens in different situations which depend on the type of
the user interface. In general, users should not have to remember too many details while
interacting with an application. Additional factors that may cause cognitive load are too
many choices [45], an unclear interface design or time. The term cognitive load does not
include a stress factor but too much cognitive load can cause stress. “Stress represents
a psychological response state to a perceived threat or task demand and is in general
signalized by specific emotions such as frustration, anxiety and tenseness” [47]. The two
phenomena can occur independently. However, stress while using an application is often
related to cognitive load.

Cognitive load is required to process everything in the world around us. It can be
described as the amount of mental resources needed to process a certain task. Auditory
interfaces challenge the human memory in particular, because the information is non-
persistent. As a result, the user has to remember what was said before. Otherwise, the
context is unclear.

Therefore, VUI designers must respect the human cognitive resources. Users are some-
times new to topics, which requires more cognitive load to process the information. Fur-
thermore, they have to remember the context of the application and may are distracted
by other interfaces (in case of multimodal interfaces). To lower the cognitive load, design-
ers can use constants. Such constants are words that are used in the same way in every
conversation. They are not depending on a particular application or on a context. An
example for a constant is the word help. A user always expect it to provide more detailed
instructions on how to go on.

Additionally, consistency helps to lower the required cognitive load. Obviously, this
always relies on the context. It helps, if users only have to remember a few universal com-
mands. The number of commands should be small. Commands should be named clear
and work as expected. The VUI should use a consistent dialog structure and a consistent
terminology to give the user a more secure feeling while using the VUI. As result, users
feel more confident and exactly know what to expect.

Context also helps to lower the cognitive load. Therefore, the VUI should make sure,
there is enough contextual information [118] [9]. It is easier for people to connect new
information with existing concepts.

11

2 Background

Users, who are currently processing complex information may not be able to answer
questions. In normal situations, user only can remember seven items [80]. Therefore, UI
designers should never create UIs that require the user to remember more then seven
items. However, this is the general case. For VUIs, this number needs to be smaller, be-
cause users cannot navigate back as easily as on GUIs. Cohen et al. suggest to limit it at
already three items. Also, grouping items helps in this case. Broadbent found out that the
recall is best when items are grouped into groups of three or four items [11] [33] [104]. The
UI can make use of the fact that people remember best what was said most recently [8].

In general, designers should make sure that users are able to describe actions in their
own words. This way, users do not have to think about commands that the VUI uses.
Teaching users how to use a VUI is a process that takes much more time. Worse, this
technique can upset users and make them quit using the application.

The ultimate goal for a simple UI is to keep the cognitive load low. Achieving this
goal results in a better user satisfaction. Especially today’s mobile applications have to be
simple. If they stress the user, the user will uninstall it very quickly [109]. This is mostly
the case, because users have a wide range of options for applications to solve whatever
problem they have [107].

Multimodality is often used to reduce the amount of cognitive load. This is especially
the case, when the main interface is not suitable to present the data. A good example can
be seen in figure 2.2. The Google Assistant was asked to provide a list of the presidents
of America. The response of the Google Assistant is as follows: Presidents of the United
States of America include Donald Trump, Barack Obama, George W. Bush and others. As can be
seen with this answer, there are not all names read out. This would have been too much
cognitive load for most users because it would require to remember a large number of
names. Also, reading out the whole list would take much time. To solve this problem, the
Google Assistant combines a VUI with the existing GUI. There is a list of all presidents,
which the user can scroll through. Additionally, Google uses the GUI to provide a picture
for each president, rather than just the name. This makes it much easier, if the user is
looking for a particular list entry without knowing what exactly to look for. It is also
noticeable that the user gets suggestions on the screen on how to move on.

This example shows how the cognitive load can be lowered. The Google Assistant does
not read the whole list out. In this case, the user would have to remember all of the lists
entries. It is very likely that this takes too much time for the user. Like lists, there are
other forms of data that are not suitable to be presented using a VUI. Another prominent
example are maps and locations. Maps and also pictures are difficult to explain, even in a
human-to-human conversation. These are examples to show, how GUIs can support VUIs
if they are used as a multimodal interface. Also, VUIs can support GUIs. For example, if
a user is looking for a song, the GUI can only describe the song using text. An auditory
output is not possible. Changing to a VUI in that moment, creates a more fluent user
experience, because the user does not have to switch between the graphical description
on the GUI and the auditory channel.

As can be seen from the examples above, multimodal interfaces are usually used to
compensate the weaknesses of other types of interfaces. This is not only the case for GUIs
and VUIs, but also for all other types of user interfaces.

2.2.3 Designing for mobile devices

Multimodal design for mobile devices usually includes a GUI and a VUI. Due to the
existence of a front camera, an interface to recognize gestures would be possible as well,
but it is rarely used. Mobile devices have perfect preconditions for multimodal support.

12

2.2 Multimodal interfaces

This is because in most cases, they have a touchscreen, a microphone, a speaker and a
front camera.

Figure 2.2: Response of the Google Assistant to
request to show a list of the American
presidents

This chapter concentrates on multi-
modal applications combining a VUI and a
GUI. Since this thesis describes the VUIs in
more detail in the following chapters, this
sections main objective is about the GUI
design.

When designing a multimodal applica-
tion, it is very important that the differ-
ent interfaces support each other and fit to-
gether. Often, the GUI supports the VUI.
Because the user has to concentrate on two
different interfaces at the same time, the
design of the GUI should be kept simple.
It supports the VUI by presenting the key
words or displaying data that cannot be
displayed using a VUI. In addition, GUIs
can be used very well to present confirma-
tions or for the purpose of disambiguation.
For confirmation, the user can just click OK
rather than confirming it each time using
the voice. This is a very quick and easy way
of confirmation. Because all of this is done
in the same time, the GUI should follow
guidelines to not be too complicated.

In general, the design of a GUI support-
ing a VUI should follow the same guide-
lines as every other GUI should follow.
However, simplicity is even more impor-
tant in this use case. Most smartphone
users are very comfortable with touch-
screens, because they were using them for
years. Even on hybrid devices with a physical keyboard, users prefer touch. When design-
ing the GUI, developers need to keep some rules in mind. The most important fact is that
users use their thumb in most cases to control the device. In conclusion, this means that the
important functions can easily be reached by the thumb. As Josh Clark explains, the place-
ment depends on the size of the screen. Nevertheless, all screen sizes have similarities, as
can be seen in figure 2.3. It is best to place the main functionalities in the bottom, middle
part of the screen. Unfortunately, this place is already occupied by main system functions
of most operating systems. However, the room above these main system function (a bar
on Android, the home button and a menu on iOS) can still be used. It additionally has the
advantage to be well reachable by both left handed and right handed users. Potentially
harmful actions such as posting something in public or transferring money should be put
out of the thumbs range. Then, they are more difficult to reach and are not hit by accident
very often.

Because the GUI is often not the main interface in a multimodal application, it is already
kept simple. In most cases it is used as secondary confirmation. Besides the rules men-
tioned above, designers should also keep in mind that the thumb will cover the bottom
parts when using functions at the upper part of the screen. Especially when an interac-

13

2 Background

tion results in changes on the screen, this is an important aspect. Users sometime do not
recognize that something changed as they cannot see it.

Another aspect which needs to be considered is the touch size. There are suggestions
made by each operating system on how large a touch target should be. Because of different
rendering and different screen sizes, this is often different depending on the operating
system. Microsoft for example suggests 33px, whereas Google suggests a minimum size
of 29px on Android. Apple suggests 33px for iOS applications [64].

Furthermore, Clark points out to create interfaces that require the least possible number
of clicks to achieve the goal the user wants to reach. Especially when using the GUI as
additional interface for a VUI, this should be a very important design goal as the user
must manage to switch interfaces. Additionally, requiring more clicks from the user can
be disappointing for the user [16].

Figure 2.3: Locations which can be easily reached with a thumb on a phone [16]

The quality of VUIs can be increased significantly by anticipating what the user wants
to do next. This is not only helpful for the VUI itself, it can also be used for suggestions
presented on the GUI. Because a tap on a button is always quicker than using the voice
again, this can save much time. It also increases the confidence the user has into the
application because a button is often very clear.

The Google Assistant makes heavy use of that. An example can be seen in figure 2.4.
The Google Assistant was asked to show the closest parks nearby. There are a multiple
noticeable things in the response provided.

First, the Google Assistant provides a map. It is helpful to display this kind of data on
the screen, because it cannot properly be presented using a VUI.

The second noticeable fact is the presentation of the list of results. There are only three
results shown. The reason for this is because showing more results would confuse the
user. Because the application combines a map and VUI, so a longer list would be too
much cognitive load for most users. However, the list ends with the entry More places.
This suggests that the search can be continued if the result is not satisfying yet. Each list
entry provides the name of the location, a rating and a picture. The picture is used as
a simplification, especially for users who are looking for a particular place they already
know. Additionally, the places are ordered by their distance to the current location. Google
assumes the user searches for places, because he / she wants to go there. This is the case
for most location searches, so sorting the entries by distance is useful. All results are
displayed in a place reachable by the user’s thumb, so a navigation can be started with
only a few taps.

14

2.2 Multimodal interfaces

Figure 2.4: List of closest parks provided by the
Google Assistant

The third aspect which should be no-
ticed in figure 2.4 are the suggestions of
what to do next. They are shown in a very
good position at the bottom of the screen.
It can be difficult to anticipate those sug-
gestions, depending on the situation. How-
ever, they simplify the interaction a lot.
One of the major problems VUIs have, is
that it is not clear what a user can do, be-
cause there is no hint like a graphical menu
that list all actions. This leads to the prob-
lem, that users may not know, what to say.
This situation can be solved by suggestions
on the screen. The VUI can also help the
user with reading them out as examples.
However, this should only be done to help
the user when it seems that she / he is
stuck. More information about how to help
the user and handle such kind of errors
can be found in section 4.3.3 and section
4.3.4. In figure 2.4, the reader can see that
the Google Assistant suggests to search fur-
ther or to select the closest one and get di-
rections on how to get there.

Single tap alternatives like buttons or
suggestions like this are very important
parts of the simplification of a GUI. Also,
autocompletion and type ahead functions
should be used whenever possible. A sin-
gle tap is always faster than typing or us-
ing the voice. So, if assumptions can be
made, they should be used. Another exam-
ple are input boxes for numbers like the quantity. Adding plus and minus steppers heavily
reduce the effort to increase or decrease the amount by single steps. It is obvious that this
only helps in certain use cases. It is up to the interface designer to decide whether it is
useful or not. Especially when using multimodal interfaces, it depends on the current use
case which user interface should be the primary used one. As Clark points out, single
taps are a very good solution, but sometimes it is not possible. Although many users are
comfortable with touchscreens, they are still not the best solution for writing long texts.
Paul Kinlan even suggests to minimize writing in every situation by saying that “I love
typing on a phone” was never said by a real person ever [64]. Deciding when to use which
interfaces and managing the transitions between the different interfaces is the main task
of the interface designers [16].

However, using a GUI and a VUI together creates new possibilities to interact with
an application. Cathy Pearl suggests a combination of both interfaces as follows: “For
example, if I ask, “What’s the capital of this state?” while pointing to Kansas on a map
of the United States, anyone observing me will know which state I’m referring to. A VUI
could do this as well by using the location of where the screen is tapped in conjunction
with the speech input. For a chess game, for example, the user could tap a space while
saying “move my knight here” [90]. In such use cases, the quality of the VUI needs to be on

15

2 Background

a very high level. Errors weight more, because it seems to be very clear what was meant to
the user. In conclusion, this means there is not much understanding for confirmations or
disambiguations. Applications using both interfaces like the ones describe by Cathy Pearl
are still pretty rarely used today. However, there are many uses cases where a combination
like this makes sense and creates an attracting user experience.

16

3 Conversational Design

Modern VUIs need to be conversational. Today, most VUIs offer only to understand spo-
ken commands and translate them into actions. Conversational design introduces a VUI
design that keeps track of what was said before. A conversation that relies on the knowl-
edge of all participants about what their history is one of the major aspects of creating a
more human conversation. Stanford professor Herbert Clark describes that the theory of
a common ground of a conversation is, that “individuals engaged in conversation must
share knowledge in order to be understood and have a meaningful conversation” [15].

A task that does not rely on other tasks and can be run on its own is called one turn
task. One turn tasks are the opposite of conversational design. There can be a sequence
of one turn tasks, but each task can be performed on its own. It does not rely in any
way on what was said before or on any knowledge about the user currently logged in.
These commands are what today’s systems usually offer. They are still useful to perform
commands a normal computer system would do. But since artificial intelligence systems
are growing rapidly, it is possible to integrate this intelligence into VUIs and create more
advanced systems.

The following conversation, dialog 3.1, shows how a user could possibly interact with
the Google Assistant. The data provided here depends on a real conversation conducted
for the purpose of this thesis. In this case, the Google Assistant was used on a Google
Nexus 5X mobile phone. Notice that each expression starts with the command Ok Google.
The expression was said after the Google Assistant responds with a sound indicating that
it is ready to listen to the user. To simplify the conversation, this command and the sound
are only transcribed the first time, when it is used to start the conversation. Furthermore,
the Google Assistant sometimes provides additional data shown on the phones screen.
If this is the case, there are additional annotations in the conversation (italicized and
surrounded by hyphens).

The conversation above shows a sequence of one turn tasks. None of the asked ques-
tions relies on knowledge of what was said before in the conversation. In other words,
each of the questions could have been asked without being part of this particular con-
versation. Additionally, the time of when the questions was asked does not make any
difference. The result would always be the same. All information needed to answer a
question is provided within the question.

Conversational means that there is a knowledge about what was said before in the
conversation. In addition, this knowledge is used to understand the question and / or
improve the answer. There are two levels of conversational design. First, there are conver-
sations that consider the short term history. This means, everything said in the existing,
currently ongoing conversation is considered for answers and can be used to improve the
answers responded to the user. Second, conversations can be based on what happened
days or weeks ago. This is more human, because humans usually remember the experi-
ences they had, even a longer time ago. Statistics about what was said earlier help as well.
Mathematical statistical processes help to reveal more details about the user’s preferences.
Those can be used to select better answers when responding to the user. Especially during
disambiguation, this data is very helpful [90].

The Google Assistant already supports these kind of conversations in some situations.
Figure 3.1 shows a sequence of an example dialog performed for this thesis. It shows, that

17

3 Conversational Design

Me
Ok Google

Google
–SOUND–

Me
How is the weather in Harrisonburg, Virginia?

Google
In Harrisonburg, it’s 23°C and mostly cloudy. Today will there be scattered thunderstorms
with a forecasted high of 27 and a low 18.

Me
Where is Harrisonburg, Virginia?

Google
Here is a map of Harrisonburg, Virginia.
–Providing a map on screen–

Me
How far is Harrisonburg, Virginia away from Dulles International Airport?

Google
Dulles International Airport IAD is 118 miles away from Harrisonburg by car.
–Providing a map with route on screen–

Me
What’s the population of Harrisonburg, Virginia?

Google
The population of Harrisonburg was 52,478 in 2014.

Me
What’s the zip code of Harrisonburg, Virginia?

Google
Harrisonburgs zip codes are 22801, 22802 and 22807.

Me
What are the most popular things to do in Harrisonburg, Virginia?

Google
Attractions in Harrisonburg include Explore More Discovery Museum, Shenandoah Val-
ley and others.
–Providing list with pictures–

Dialog 3.1: Sample dialog for a successful dialog

there are good approaches. However, it also shows that the Google Assistant sometimes

18

struggles with tasks. There are six different tasks performed by the Google Assistant. All
of them can be seen in figure 3.1. Each task relies on the previous one. Firstly, the Google
Assistant is asked who James Madison is (a). It responds by reading out the beginning
of the related article from Wikipedia [59]. Secondly, the next question asked is about the
height of James Madison (b). It should be noticed, that the question does not directly refers
to James Madison by his name. Instead, the user refers to him as he. The Google Assistant
correctly assumes that he refers to James Madison, as this was the last male person the user
was talking about. This only works because the user was talking about James Madison
earlier. In contrast, starting the Google Assistant and asking the question How tall was he?
without any context of earlier conversations, Google responds by answering the question
who the tallest men currently alive is. The reason for this behavior is the design of the
Google Assistant. Because there is no context, it answers the question which is closed to
one asked and can be answered. The third question in figure 3.1 is about the birthplace of
James Madison (c). Google answers this question with both the place and the time when
he was born. Fourthly, the user asks how far this place is away (d). The screenshot shows
the second attempt asking directly for the place that was read out as James Madisons
birthplace earlier. The first attempt was the question How far is that away?, which was
directly asked after the answer where James Madison was born. It did not respond with
the correct answer. The pronoun where was not correctly mapped to the birthplace in
this case. Because of this reason, a more direct question had to be used. For the user, this
means that two separate questions are necessary. Moreover, to ask the second, more direct
question, the user has to figure out, what went wrong in the first place and also needs
to remember the exact place where James Madison was born. This is heavy cognitive
load for the user which does not result in a usable interface. The two remaining questions
are related to the place where James Madison was born. The fifth question aims to find
restaurants there (e). Google responds with a restaurant and additionally uses the screen
to show more information and quick links that help the user to navigate there, call or visit
the website. Lastly, the Google Assistant is asked for the opening hours of the restaurant
(f). Again, the pronoun it is replaced by the restaurant correctly.

As can be seen in this sequence, the replacement of pronouns already works well for
easy conversations. Such replacements are done in every conversation by humans. If
they do not work as expected, a user feels quickly annoyed. Moreover, the user has to
keep every replacement in mind and carefully replace possible pronouns by himself. This
work should be done by the VUI. Designers should therefore include strategies to replace
pronouns whenever possible.

Interaction which goes beyond one turn tasks becomes more human. A VUI designed to
act with this behavior is called conversational. To achieve this, there are some abilities re-
quired. The anticipation of what could possibly be asked next must be accurate. Therefore,
a good knowledge of the history what was asked before is important. Moreover, the VUI
system should be able to replace pronouns correctly. The replacement of pronouns relies
on the history of data hold by the system. This data is required because the system needs
to know what to replace the pronoun with. There are more items that can be important
for the replacement of pronouns. To replace a personal pronoun, it can be useful to have
a look to the contacts a user has saved. Also, this helps while disambiguation. The appli-
cation needs to keep track of every aspect that was said and save as much information as
possible. Therefore, multiple strategies can be applied. Section 5.3 gives an overview over
those strategies.

19

3 Conversational Design

Figure 3.1: Series of screenshots taken when using the Google Assistant to get more information
about James Madison

20

3.1 Linguistic basics of conversations

Another important aspect are questions. To keep a conversation going, questions are
a very helpful instrument to do so. As Cathy Pearl points out, it is relevant for a good
conversation to keep the questions clear. Instead of asking Do you want to change it or
send it? a system should better ask What would you like to do: send or change?. By using
the latter one, the user knows that there currently are two options which can be decided
from. Staying with clear questions is especially important so the user does not feel lost
and does not know which options are currently available. To keep the questions clear, a
designer should never use rhetorical questions, because they most likely confuse users.
When designing a VUI, the designer has to keep in mind that the user has to remember all
options. This is required because the screen cannot be used to get an overview, in case the
user missed an option or forgot about one of them. Therefore, it is also necessary to keep
the number of options small. If the system offers many options, then it is better to give
the user freedom about what to say and mapping what was said to the available options
than reading all options out. On the other hand, the user can get lost with a design like
this. Therefore, VUIs carefully have to be designed to help lost users. Section 4.3.3 gives
more information about how to help a user [90].

Not only questions help to create a more fluent conversation. A VUI should prevent
overlapping speech and not use any filler words. Moreover, conversation markers help
user to navigate through a VUIs menu structure. There are different kinds of such markers.
First, there are markers for the timeline such as first, last, halfway there and others. Second,
a VUI should make use of acknowledgments like Thanks and Alright to give the user the
feeling that what said was understood. Lastly, positive feedback as for example Good job
can help to increase the confidence into the system as well as creating a fluent conversation.
Because they are often used in real human conversations, these markers help to create
more fluent conversations. Since the main benefit of VUIs is that users do not have to
learn how to interact with them, a more human VUI becomes automatically more usable.

3.1 Linguistic basics of conversations

To be able to create a usable VUI, designers must understand the principles of human
conversations. A lot of research has been made to analyze, how humans communicate
with each other and how they build up conversations.

According to Cohen et al. [17], conversations are a discourse with the language de-
scribing the understanding beyond words. Conversations always provide a context and
everything said in a conversation is therefore context-sensitive. The meaning of a sentence
often relies on what else was said in the conversation. By design, conversations are com-
municative. Their language follows certain principles in grammar, words and rules how
to create new words. These rules are different for each language, but they exist in every
language. Knowing these rules helps users to understand the meaning of a utterance.
Often conversations are based on conventions. Sometimes, conversations also include
a certain level of unconsciousness. This is the case because words are sometimes used
differently by several people. Richards says that a conversation “consists of exchanges
which are initiated and interpreted according to intuitively understood and socially ac-
quired rules and norms of conversational cooperation, which can in turn be manipulated
to create a wide range of meanings beyond the level expressed directly by the utterances
in the conversation themselves” [96].

Paul Grice defined four maxims that are required for a good conversation [45]. A good
conversation is based on the cooperative principle, which was introduced by Paul Grice
as well. The cooperative principle “refers to the fact that listeners and speakers, in order
to have a successful conversation, must act cooperatively” [90]. The four maxims defined

21

3 Conversational Design

by Grice are:

• Quantity This maxim relates to the amount of information provided in what is said.
It summarizes two other maxims. Firstly, a contribution should be as informative as
required for the current situation. Secondly, it should also not be more informative
than required. However, this second maxim is sometimes seen disputable. Grice
says, too much information is more a waste of time than a transgression of the
quantity maxim. Nevertheless, being over informative can be confusing or it can
mislead the recipient.

• Quality Each contribution should be true. This maxim also includes two sub max-
ims. The first one relates to what the speaker believes. According to Grice, the
speaker should not say anything that she / he does not believe is true. The sec-
ond maxim which the quality maxim is based regards the evidence. Grice claims,
that the speaker should not say anything, which lacks evidence.

• Relation This can be simplified by the fact that each contribution has to be relevant
for the conversation. This is a very open maxim which still opens a lot of questions
about what is relevant.

• Manner This maxim does not describe what was said, it describes how something
is said. This is a supermaxim of a set of different other maxims. Those include for
example to avoid the obscurity of expression, to avoid ambiguity, to be brief and
to be orderly. Depending on the individual and the situation, there might be others
that can be added to the list. In general, the speaker should be clear with what she /
he wants to say.

These maxims are, according to Grice, the basis for a good conversation. However, he
also points out, that, depending on the situation, some maxims can be more important
than others.

Especially for the understanding and the synthesis of natural languages, designers need
to understand the mechanics of human conversation. Natural language processing (NLP)
concerns the understanding of the speech itself, not of the action items correlating to it. As
described, NLP only considers the speech and therefore does not distinguish between a
single sentence and a whole conversation. The process of analyzing a whole conversation
is called conversation analysis (CA). Although the general opinion around 1990 was that
CA cannot be done by deterministic computers [69], this has changed since then [82].

The result of the CA can be seen in Schegloff’s adjacent pair model [102]. This model de-
pends on adjacent pairs which are connected to a more complex sequence. This sequence
is the representation of a conversation. Following Schegloff’s model, an adjacent pair is
characterized by:

• A sequence of two utterances, which are

• (preferable) adjacent

• produced by different speakers

• ordered as a first-pair part (1PP) and second-pair part (2PP) and

• typed, so that a first pair part requires a particular second pair part (or range of
second parts)

22

3.1 Linguistic basics of conversations

A simple example would be a greeting. Both participants greet each other and create
a greeting-greeting sequence. Similar, goodbye-goodbye would be another example for
a simple adjacent pair. A simple question and answer situation, which is familiar from
frequency asked questions (FAQ) or search engines can be represented by using adjacent
pairs. This is because the question can be represented by the first-pair part and the answer
can be represented by the second-pair part. To create a conversation, the adjacent model
can be extended. Schegloff calls this process expansion. The sequence can be expanded
to an arbitrary length using additional adjacent pairs. There are three different positions
where in the structure that are possible for the expansion: pre-expansion, insert-expansion
and post-expansion.

Figure 3.2: Expansion with adjacent pairs [102]

Moore et al. give a good example for the
expansion [82]. Their example can be seen
in figure 3.2. It is noticeable, that there is
a base adjacent pair which represents the
action defined by the utterance. The pre-
expansion defines the dependencies for the
first-base part, which is then produced by
the speaker. The recipient then either man-
ages the dependencies or repairs the base
first-pair part. With doing so, the recipi-
ent generates the response to the main ac-
tion which was initialized by the speaker.
The speaker then has the chance to manage
dependencies or to perform repairs based
on the base first-pair part or on the base
second-pair part.

Dialog 3.2 gives a practical example of
this process. The first adjacent pair (lines
01 and 02) describes the preconditions. The
question cannot be answered directly, so
there is an expansion necessary to clarify
the situation. This is done by asking an-
other question. In line 03, the confirmation

indicates that the action can be performed. The action results in a way to the requested lo-
cation, which can be seen in line 04. Both the lines 05 and 06 are used as the post-expansion
pair.

It is obvious, that this is only a simple example of an expansion. This example contains
only a single expansion. However, each of the adjacent pairs, meaning the pre-expansion
pair, the inserted pair and also the post-expansion pair can be expanded to arbitrary
lengths.

01 Hello, what is the shortest way to the bus stop?
02 Do you mean the bus stop in Main Street?
03 Yes!
04 Okay. Just follow this street and turn left. It is right at the corner.
05 Thank you.
06 You’re welcome.

Dialog 3.2: Example dialog for adjacent expansion

Each of the pairs usually helps to create dependencies necessary to create the action
items. If something was not understood correctly, any participant (speaker and recipient)

23

3 Conversational Design

can initiate a repair. A repair aims to correct troubles might occur during the utterance. It
is represented by different wording which repeats something that was actually already
said [101].

As Moore et al. point out, the usage of adjacent pairs which make a conversation able
to be expanded, is the major difference between dialog systems and information retrieval
systems. In comparison to information retrieval systems “only dialogue systems, with
sequence expansions and repairs, can provide support for user understanding of that
information” [82].

The adjacent model is one of most important models regarding conversations. Never-
theless, there are many other theories bothering the subject of conversations. To help VUI
developers, Google simplified the process of a conversation into six steps [43]:

1. Opening a channel and setting up common ground

This happens when participant A sends a message to participant B to initiate the
conversation.

2. Commit to engage

Participant B agrees to have a conversation with A.

3. Construct the meaning

Both participants share ideas and connect through them. They are might using
different contexts in this step. This can be a previous conversation but also any
other type of context. Context are often unspoken.

4. Evolve

Based on their interaction, either A or B or both obtain something new based on
their conversation

5. Converge on agreement

Describes the result of the conversation. The participants either agree on something
and have a positive result or they might try to repair the conversation if not.

6. Act or interact

As a result of the conversation, there is always a functional action or the achievement
of an unconscious goal.

Those guidelines simplify conversations, but they are the main parts of each conver-
sation. Although the steps described above are defined by Google, they are similar to
Schegloff’s definition. Opening a channel and agreeing to participate in a conversation
(steps 1 and 2) can be seen as pre-expansion of the actual conversation. The construction
of the meaning (steps 3) can be seen as the inserted pairs between the main action items.
Because this step may requires more information, it can be expanded as well. When the
participants reach the evolvement stage (step 4), they basically reach the point which is
described by Schegloff as the base second-pair part. Finally, the agreement and the action
items (steps 5 and 6) can be seen as post-expansion. They can be expanded again, because
they may require repairment processes.

There is more research about the mechanics of conversations, but most of them are
based on Schegloff’s adjacent pair model. Further studies concerning the behavioral roles
of members [97] [51] [22].

24

3.2 Turn taking

3.2 Turn taking

When designing a VUI, it is very important that the system recognizes when it is it’s
turn to speak. To start the interaction, most VUIs use a keyword. Examples are Amazon’s
Echo with the command Alexa [1], Google’s Assistant using the command OK Google [38],
Apple’s Siri can be activated using Hey Siri [6] or Microsoft’s Cortana with the command
Hey Cortana [75]. Some can also be activated by tapping a button on a GUI. For example,
this is not possible with Amazon’s Echo, because this device does not have a screen.

Besides that the initiation can be seen as turn, a turn in a conversation is usually the
point, when the role of the active speaker changes. Therefore, one participant of the con-
versation has to stop talking followed by another participant who starts talking. In a
simple version with only two participants the participant who is listening has to realize
that the speaker has stopped. Then, the floor is open. So the listener is now able to become
the speaker. In a conversation with more than two people, the participants have to master
another challenge because it is often not clear who the next speaker will be. This will be
discussed later in this chapter.

It is possible, that a participant starts to talk even if there was no turning point reached.
In most cases, this is considered to be rude and impolite [90]. However, there are other
situations that justify the interruption of another speaker.

Based on Sacks, Schegloff and Jefferson, the theory uses Turn-Constructional-Units
(TCU) to mark turning points. After each TCU, there are three different possibilities how
the conversation can go on. Firstly, nothing can happen and the conversation comes to
an end. Secondly, another person can continue the conversation. In this case, the current
speaker can select a person to continue. This can happen by asking a direct question to
another participant of the conversation. Moreover, the current speaker can only address
another person by using their name. It is obvious, that the speaker also can leave it open
who should speak next. Finally, the conversation can be continued by the same person
as before. In other words, the current speaker selects himself as the new speaker. The
possibilities described above are from a speakers point of view. However, listeners can
also influence the conversation flow.

Each listener has choices and can influence the turn taking of a conversation. First,
each participant can simply wait until the turn is offered. Second, a listener can wait at
a possible turning point for the speaker to continue (no change of the speaker). Third, a
listener can decide to speak when the floor is open. Fourth, any listener can interrupt the
current speaker, even if this is considered as rude behavior. Lastly, any participant can
also decide to speak even if the floor was offered to someone else. Similar to interrupting
someone, this can also be considered as impoliteness.

Who takes the turn is in real conversations often also influenced by non-verbal cues.
Obviously, these cannot used when building a VUI, except the interface uses an avatar.
An avatar is a visual representation of the VUI. It can be a still image, a prerecorded video
or an animated cartoon. As Cathy Pearl says, there are also nonhuman avatars which look
like monsters or other familiar shapes [90]. Pearl also points out reasons, why to use an
avatar and why not. There are positives and negatives listed in her book “Designing voice
user interfaces” (see chapter 3 in [90]). Edlund / Beskow show, that non-verbal cues are
very important and result in longer turns. Additionally, people who are using non-verbal
cues take the turn much faster than people who do not use non-verbal cues [25].

Before someone takes the turn, there are differences in behavior as well. People can
decide to start speaking as soon as possible, even if that means that they interrupt other
speakers. They can also wait for the current speaker to stop or add a pause, before they
start speaking themselves. As Gerritsen and Claes found out, this behavior can be different

25

3 Conversational Design

in other cultures [26] [14]. For example, Germanic speakers often start when another
speaker stopped, while Roman cultures tend to start as quickly as possible. In contrast,
Japanese speakers usually add a short pause before starting to speak. This behavior should
be considered when designing a VUI. Fortunately, this behavior is strongly connected to
the language the user is currently using.

In case, any participant decides to start speaking before the current speaker has finished
his point, the conversation overlaps. This phenomenon is called overlapping speech. Ter
Maat and Heylen point out, that overlapping speech is not always a bad situation [71].
Overlapping speech can result in a breakdown of the conversation, but it does not have to
crash the conversation. It is often used as a backchannel, mainly to ask questions, express
agreement or to make suggestions. As Schegloff says, there are different options for the
current speaker to handle the situation. Firstly the current speaker can stop speaking,
which is often considered to be more warm, passive and submissive. Secondly, the speaker
can continue normally with his speech. Lastly, the speaker can raise the voice and speak
louder. This is mostly considered to be unfriendly, aroused, disagreeable and rude [100].
To find out, what feelings participants of the conversation have, Ter Maat and Heylen built
a simulator, to create different conversations [71]. The behavior of the participants can be
described using an extended markup language (XML) file. The results were not evaluated
automatically. Instead, the results were evaluated by real people who were listening to
the audio files.

To summarize the situation, turn taking is an important topic and should be considered
while designing a VUI. The turn taking behavior has a great influence to the UX. It can
also influence the persona of the VUI. As a result the way people think about the VUI and
their feelings may be influenced by the turn taking behavior. It is important to create a VUI
that behaves as human as possible. In conclusion, the VUI needs to meet the expectations
of a certain culture for each language (if the VUI should support different languages).

3.3 Avatars

Whenever people hear a voice for the first time, they imagine how this person could look
like. Obviously, this only happens, if only the voice is present. This is important, because
the voice needs to fit to the person it belongs to. In nature, this is almost always the case.
But when designing an avatar, it is usually designed for a voice and a certain use case.

A persona, or avatar, is the mental image of a person. They can be used as visual rep-
resentation of a VUI. They usually appear on a screen. If the team decides to provide an
avatar, it is important, to carefully design avatar and voice together. The wrong persona
will seem awkward and confuse users.

It is a complex decision, to decide whether a VUI should be visualized or not. To decide,
it could be a good idea to imagine, how a system could be visualized. It also depends,
on what the system recognizes. If the VUI often turns requests into search requests, it
is not recommended to user a very human avatar. Instead, an abstract representation
can be used. This indicates that something is going on, without being too personal. The
Google Assistant or Siri implementing such visual representations. But often, avatars are
not required. In contrast, they sometimes even distract people [90].

If designed correctly, an avatar acts as a metaphor of the system and as the role of the
VUI. Its design heavily depends on the context. If the VUI serves a business aspect, the
avatar must be designed to seem trustworthy. A young girl for example would be the
wrong choice. Designers also need to keep in mind, that the brand and also its image are
closely connected to the persona. An avatar should also designed to serve the end users.
The user need to talk to the persona and therefore has to like it. As a result, designers

26

3.4 Chatbots and personalized assistants

should keep in mind, who their target audience is and what the mindset of the users is.
Ideally, a persona should be developed before the VUI. This ensures the consistency

with the application content. The definition of a persona should start with a predefinition,
followed by a biographical sketch. Then, designers can add vocal attributes. Looking at a
photograph while designing the avatar is often helpful [17].

3.4 Chatbots and personalized assistants

The core of a VUI is the script. This text has to be generated. Obviously, a VUI also covers
the aspect of understanding spoken words and replying to them, but the core is about
understanding the meaning of what was said and replying to that in a proper way. As a
result, VUIs can be simplified by skipping the speech recognition and replacing it with
text as input. Similar, the speech synthesis, which is the normal output for VUIs, can be
replaced by generating text. The text has to be generated anyways, but a VUI additionally
reads it out and therefore uses a voice.

In contrast, chatbots only understand the text and produce text as an output. In other
words, chatbots are simplified VUIs. Chatbots are text based tools which let users accom-
plish tasks in a conversational manner. Therefore, bots (short for robots) use, in most
cases, artificial intelligence to understand what was said, perform a task and generate a
proper response to the user. If artificial intelligence is not sufficient enough, applications
are sometimes supported by humans to complete tasks.

Bots became very popular, because they are the first step towards a conversational UI.
Because many people are used to text and especially to typing on a phone (over 2.5 billion
people have at least one messaging application installed on their smartphone [23]), they
are used to a text based interfaces. This is one of the reasons why many users are willing
to use chatbots. Another situation that leads to the current good position of text based
bots is the enormous amount of mobile applications. As David Marcus, Facebook’s vice
president of messaging apps, says: “People don’t want apps for every single business
that you interact with. They want the ones on your homescreen and that’s it” [92]. This
situation gets worse, as the average application size gets bigger [111], but space on phones
is still limited. This is where chatbots can help. Because messaging applications already
provide all the requirements a chatbot needs, they are the first candidates to be extended
to chatbot applications. Examples for this are WeChat [72], Telegram [108] or Facebook’s
Messenger [27]. Instead of sending a message to a real human, a bot answers. As a result,
users do not have to switch to another application to accomplish their tasks. As Google’s
messenger Allo shows, they also can be included in a conversation with real humans and
support with tasks [37].

For developers, it is also easier to develop chatbots than developing a whole application.
This is because a developer only needs to define the content. The UI and the design of
the interaction with the user is already designed by the chatbot application itself. This
results in easier and faster development processes. The downside is that developers lose
the opportunity to customize the look and feel of their application.

Unfortunately, bots are not always a solution. Not every use case can fit into a text
based application. The fact, that chatbots are now able to not only support text as output,
does not change so much [46]. Chatbots suffer from the downside, that they require a lot
more taps than applications that are made for a special use case. Dan Grover compares
the use case Ordering pizza by using a chatbot and an application, which is made to order
pizza. The result is 73 taps in the chatbot versus 16 taps in the application. Also, using
an applications lets users accomplish their tasks faster, as everything is clearly structured.
In a chatbot, the user always has to read text, which slows down. Therefore, chatbots are

27

3 Conversational Design

obviously more flexible compared by their content [46].
Chatbots can still be useful in many use cases, mainly because people are used to type.

Also, chatbot applications like WeChat try to support users by designing more possible
types of answers. They also try to improve the interaction by giving the developers more
options to design the interface, so users do not have to type every action and can be
offered with customized buttons instead.

The term personal assistants collects different varieties of VUIs and chatbots, but all
of them have the ability to respond with personalized responses. Therefore, data about
the user is necessary. This data can come from existing user profiles or from previous
conversations. It does not make any difference, if the input and output is covered by
speech (as in case of VUIs) or by text (as in case of chatbots).

3.5 Impact to the user experience

VUIs change the ways how users interact with modern applications. Not all applications
are qualified for the usage of VUIs. This is heavily based on the underlying data. Today,
after VUIs have gained a lot of attention, many applications just try to implement VUIs
only for the purpose of having a VUI.

However, with a good strategy and a thoughtful design, almost every application can
be improved by offering VUI interactions. Designers should be careful and only use VUIs
when really needed. If applied correctly, VUIs change UX so that the user has a real
advantage.

The first major advantage for most users is that they can describe tasks in their own
words. This simplifies user interfaces, because users do not have to search in overstuffed
menus for the action they want to use. Applications can therefore kept simpler and still of-
fer many functionalities. In addition, this helps users that are new to applications because
they do not have to search for actions, which they sometimes do not even know the name
of. The interaction with more complex tasked can also be simplified using VUIs. Secondly,
VUIs enable applications for hands free usage. This enables the user to use the application
even when using the hands for other purposes such as driving or cooking. This enables
many applications to be more present in every life situation. Especially personal assistants,
such as Amazon’s Alexa, that aim to be available whenever needed benefit from this fact.
Finally, applications can make use of multimodal interfaces to interact with users in the
best way possible. Users can even chose their preferred way of interaction.

In contrast, the usage of VUIs changes the branding strategy for companies. Their main
branding option is now the voice and not a logo. Although, commonly used sounds can
be reused to identify the product efficiently. In contrast to commercials, VUIs often only
offer the possibility to brand their product by the voice. The choice of the voice is therefore
significantly important.

28

4 Design of voice user interfaces

The design of a VUI is a complex process. This chapter explains the main steps of this
process. Additionally, this chapter will help the reader to figure out what good VUI design
is about. This chapter describes the design of a VUI in a high level of abstraction. This
design step includes the description of what should be said, which words should be used
and which scenarios are supported. This chapter therefore does not cover the technical
implementation. Detailed thoughts about the implementation process can be read in
Chapter 6.

4.1 Requirements analysis

The decision to develop a VUI can be made because of different reasons. Similar to any
other product, the requirements need to be defined before the development starts. Re-
quirements result in a specification, which is important so that each member of the team
knows what exactly should be the product. The first part of this section is about general
requirements analysis. However, the latter part is mostly about specific topics that concern
the development of VUIs.

Requirements are defined as attributes that a software must satisfy. These attributes are
defined prior to development. They not only concern the functionality of a software, they
can also describe different other characteristics that the product can have. Examples for
this are security, performance or availability.

The organized and structured methodology followed to identify the resources a system
need to serve these requirements and the necessary characteristics for these resources is
called system requirements analysis (SRA). This process includes the design and selection
of these resources. The motivation for this process is driven by the interest of management
to keep the risk of failure low.

In general, SRA can be seen as the translation between the user needs and the actual
design of the application. This not only includes the interfaces design, it regards every de-
cision made towards the architecture of the application. This process is necessary because
the field of information technology (IT) has grown too much. As a result, people needed to
specify on certain areas. SRA decomposes the user’s needs in a way, that special tasks can
be created. These tasks can then be organized and assigned to engineers who are specified
on this particular field. This is also necessary because software products become more
complex. In almost every case, they cannot be handled by a single person anymore. As
a result, tasks are grouped by their specification and assigned to teams. The big problem
is consequently divided into multiple smaller problems, which can be handled by fewer
people. Jeffrey Grady describes this process as follows: “[...] we decompose because we
are organized into specialized engineering organizations driven by competition and our
limitations and because we are limited in the scope and complexity (breadth and depth)
of a problem that any one person can master” [44]. Not only for software projects, this has
resulted in a three-step production process: First, the problem needs to defined. After the
problem is clear, the second step is to find a solution for the problem. This second step
is often divided into three sub processes. Solving the problem mostly starts with finding
an engineering solution. This technical solution has to be translated in manufacturing

29

4 Design of voice user interfaces

needs and supplier needs then. The final sub process then manufactures the solution. The
third and final step of the overall process is to prove, that the solution actually works.
This includes quality assurance and the evaluation that the solution solves the problem
as planned [44].

System requirements analysis concentrates on the whole system. However, the most
important aspect of a VUI is the user. Therefore, this section concentrates on user require-
ments analysis. This process is highly influenced by user centered design (UCD).

Figure 4.1: UCD in context
[68]

UCD emerged from the awareness that usability is not
a subjective view of a single developer. However, UCD is
a methodology emerged from human computer interaction
(HCI) that helps both designers and developers. It puts the
user in the center of the requirements analysis and conse-
quently in the focus of the development. This ensures good
usability and removes ambiguities. It is also not subjective.
To the contrary, it is based on ergonomics, psychology, an-
thropology, and many other fields. In general, it relies on data
which is determined by studies. This data additionally helps
to limit assumptions and statistically proves what users are
doing. Also, UCD is about more than design. Aesthetics are
important, but UCD mostly cares about the effectiveness for
the designed purpose. Towards most managing opinions,
UCD is not a waste of money. If applied correctly, it helps sav-
ing money. However, also developers feel bad about UCD.
This is because caring and observing about users results in
the feeling, that the product is not moving forward. In addi-
tion, hearing criticism is hard for most people. This is why
developers often see UCD as a distraction. Instead, many de-
velopers would prefer to write new code or learn about new
application programming interfaces (APIs) and frameworks.
But UCD can help saving money by implementing the user
needs and not something else. It is as important as writing
new code. Additionally, conducting a survey creates a dis-
tance from the current task. This can help seeing problems
from a different perspective and, as a result, solves them in

an easier way. User centered design takes care of the problems at their root. Only looking
at bug reports does usually not help. Instead, developers have to stay in contact with
users and think of other possible problems. Sometimes, users simply misunderstand the
application. Therefore, the requirements must be defined in close contact to actual users.
Furthermore, UCD helps to concentrate on the user’s needs instead of distracting the
developers. As a result, the planning moves from user requirements to technical require-
ments and not the other way around. This often happens, as developers tend to see the
technical problems first. As can be seen in figure 4.1, UCD is a sub topic of HCI, which
concentrates on the interaction between humans and computers. It is a sub topic of us-
ability, which concerns the human interaction with every device. The result of UCD is an
increase of the UX. This is because developers concentrate on what the user wants and
not how to solve only the technical problems. The user often does not care about how
the problems are solved. For users, it is more important to have an easy solution. A good
UX represents an easy solution. If UCD is used correctly, it saves much money because it
prevents big change request in a later development cycle [68].

The combination of system requirements analysis with UCD results in user require-

30

4.1 Requirements analysis

ments analysis. As the previous explanations suggests, it concentrates on the requirements
important for the user. This is the basis for the development of a VUI.

For VUIs, the user requirements analysis is slightly different. Due to the different tech-
nologies and ways of interaction, the designers need to plan in other ways and consider
other constraints. Cohen et al. define three main topics that VUI designers need to take
care of: Understanding the business, understanding the user and also understanding the
application [17]. These topics were initially defined for interactive voice response (IVR)
systems, however, they are still valid and widely applicable across the software industry.

At first, designers must look at the business they are designing for. There are many
topics and questions that need to be considered:

• Business model This part is all about the motivation why the company has to build
the VUI. Understanding the business model can help to improve the UX. The moti-
vation can be divided in the primary motivation (the main reason for development).
However, there are usually secondary motivations as well. An example for a sec-
ondary motivation would is replacing an existing system.

• Corporate context Designers have to think about how the VUI fits into the product
portfolio of the company. How can it be combined with other services the company
offers? Are there overlapping functionalities?

• Corporate image Companies always trying to build a corporate image. This image
is perceived by potential customers and mainly directed by the marketing strategy.
If a new VUI is created, it has to fit into the corporate image.

• Schedule and rollout planning Obviously, the management’s schedule has to be
considered when analyzing the user needs and defining the requirements. Not all
requirements can be met in a defined time frame.

• Metrics From requirements, metrics can be defined. These metrics are then used
during the development process to measure, how good the requirements are being
met.

• Planning of beta test Especially for VUIs, an early beta test is essential. Only real
users can give designers an impression on how good the design of the conversation
actually is. Therefore, the beta test phase has to be planned early.

Besides the business itself, the most important issue for VUI designers is to understand
the users. The necessary data to understand the users is in many companies already
present and can be provided by the marketing department. If this is the case, designers
should start with this data. Sometimes, especially when developing a new product or
when developing without a big company, this data is not available yet. Then, the de-
signer have to think about their potential customers even more precisely. Cohen et al. also
defined categories of questions that designers have to think about when analyzing the
requirements. They divided these categories into two groups: First, the user profile. This
means, everything that is known about the future users. The second groups concerns the
usage of the VUI. The following list gives an overview about questions designers should
think about, when analyzing the user profile:

• Target group Who is the target group of the VUI? There are more details about the
target group that matter. For instance, this can be the demography, and, if there is a
specific demography, what matters to this group. It is also important to know if the

31

4 Design of voice user interfaces

target group is only a single group or if it can be segmented into different segments,
which have to be treated differently.

• Dialect or jargon If all the users have a common background, it is sometimes the
case that they use a specific jargon or lingo. The VUI has to be prepared to under-
stand these specific words. If all users come from a certain region, dialects can be
expected as well. This can also give hints as how to address or meet the interest of
special age groups.

• Tech sophistication Designers should think about the sophistication of their users
about technology. If it is the case that users are expected not to be familiarized with
technology then, more explicit explanations are necessary. It is good to think about
the users experiences with technology as well.

• State of mind Users will sometimes only use the VUI in a particular situation. If this
is the case, it is important to think about this situation. Is it time-critical? Is it mission-
critical? Are users dealing with money or valuable transactions? On the other hand,
users can also only use the VUI for entertainment. The amount of seriousness needs
to be resolved and this, in turn, influences the dialogs and the design of the VUI.

• Self image Almost all people have a self image. To prevent unexpected behavior,
this image should be considered while designing the VUI. If the target groups un-
derstands itself mostly as young and hip, the VUI has probably a different wording
than if the target group are mostly people understanding themselves as business
people.

• Mental model In some cases the VUI serves a functionality that users already know.
This can be because of another VUI system, but also because of other modalities.
It should be clear, that the users have to know how to interact with the data. This
helps, figuring out how they predict the VUI to work.

• View of brand This point concerns the users current perception of the brand. This
is mostly the case, if the VUI is part of a larger software product and also if the
user already knows the brand. This often leads to expectations which the designers
should be aware of.

The second category concerns the usage of the VUI. This is very important, because
designers have to make sure that the user feels comfortable while using the VUI. The
following are categories that should be considered when analyzing the requirements:

• Reason for usage The main reason for the usage of a VUI is the most important
thing to understand. It helps designing menus, error messages, help messages and
more. Additionally, it gives information about how often features are used and how
important they are.

• Single usage vs. repeated usage How often a system is used has direct impact on
the design of the VUI. Use cases that are rarely used usually need more explanation,
whereas a user who repeatedly uses a system gets familiarized with the system
quicker and learns what to do.

• Level of attention For instance, a VUI designed to use while driving, must consider
that people may not fully concentrate on the VUI system. They should concentrate
on driving. Therefore, the designers need to keep everything even simpler to avoid
distractions. Considerations like this one always needs to be a part of the design
process.

32

4.1 Requirements analysis

• Channel and environment Today, most VUIs run on a phone. But they are also
available on desktop computers or on devices like Amazon’s Echo, which do not
have a screen. The channel therefore needs to be considered. It also helps to figure
out how the environment will be. Sometimes, the designer already knows, that there
are noises to be expected in the background.

• Voluntary vs. involuntary usage Especially when people call and use IVR systems,
designers should keep in mind that customers sometimes expect to talk to a real
person. This especially is the case if their concern is serious.

• Other systems Modern VUIs make heavy use of multimodality. As a result, the
VUI depends on other systems as well. Obviously, other systems on which the VUI
depends on need to be considered during the planning process as well.

It is obvious, that the view of the company is very objective. Not all questions can be
answered and, if they can be answered, they only can be answered from the perspective of
the company. This problem can be solved when using surveys, focus groups and studies.
However, this is very expensive and takes much time. Nevertheless, if the data is available,
designers should use it. Often, this data is available in big companies that are already
spending much effort on marketing. Observational studies are also often a good resource
of information. They can be used, if call centers are available. Then, designers can listen
to phone calls to get an impression on what people ask, how people describe their issues
and what their preferences are. Additionally, it helps to interview the customer service
representatives. Designers do not get an unbiased impression this way, but these people
can provide data observed over a much longer duration. They can help with typical
confusions or misunderstandings of users.

Besides understanding the business and the users, the design team also needs to under-
stand the application itself. This means, all the details of the application must be clear to
everyone. Therefore, designers should think about the following questions:

• Tasks and sub tasks A detailed description of each task that the application sup-
ports. Additionally, the input given by the user and the output produced by the
system should be documented.

• Task complexity For each task, it also recommended to analyze the complexity. This
result in the amount of commands needed to accomplish a certain task. Additionally,
the complexity includes how much the user needs to learn to be able to use the
application.

• Recognition challenges Tasks can sometimes be challenging. The reason for this
can be the data itself. Problems like large list or long sequences of numbers should
be identified early and be documented in the user requirements. Often, there solu-
tions are already available. It just needs to be considered how to develop them. For
instance, splitting long numbers like credit cards in groups of four digits is com-
monly used. The VUI should know this. Also, it is recommended to use check sums
whenever they are available. This always helps to validate data.

• Application environment Especially if the application depends on other system
such as database systems or server calls that require an internet connection, design-
ers need to think about the expected latency (delay). The application needs to handle
cases, when the connection takes longer than expected.

33

4 Design of voice user interfaces

• Other technologies VUIs may be used for different methodologies that can influ-
ence the design. For example, a VUI can also be used to identify the user currently
talking. This result in different requirements for the application. In cases where
other systems may be involved they also need to be thought of when defining the
requirements.

The requirement analysis is the first step of the development process. Defining the
attributes of a software is essential and so it is for VUIs as well. This section points out
questions and aspects, designer should think about while defining the requirements. The
questions help, to think about all potentially important facets that can might influence the
application’s design. It is clear, that not all topics are relevant for each application. This is
always depended on the particular use case. The requirements definition is the input for
the next step: the design of dialogs on a high level.

4.2 High level dialog design

This section describes the second step of the development process of a VUI. The result
of this process is a script of all possible dialogues that the VUI should cover. Therefore,
the user requirement analysis is used to figure out, which functionalities are needed. The
purpose of the high level dialog design is to find a way to cover these requirements using
speech.

There are three main methods to create dialogs: sample dialogs, visual mockups and
flow diagrams.

Sample dialogs are a very cheap and easy to use design tool. Such a dialog represents
a single task of the application. It consists of a dialog between two parties, the VUI and
the user. The dialog goes back and forth between those two participants. Cathy Pearl
compares it best with a movie script [90]. Dialog 4.1 is an example for a sample dialog,
picked from the development process of the application which is also part of this thesis.
This process is discussed in more detail in Chapter 6. The following example starts with
the VUI, reading out a chapter of the story. For the purpose of better readability, this story
is shortened.

VUI
[...] looked at his friend and then back to Joni, who was in front of him and blocking him.
How do you want the story to continue: shoot or pass?

User
Shoot!

VUI
Joni was not a good player and it was easy for Ahmed [...]

Dialog 4.1: Sample dialog for a successful dialog

This example represents a situation, where the user acts as expected. Not every single
use case needs to be covered by sample dialogs, but the main functionalities should be
covered. Sometimes, it is difficult for designers to start, because there are many dialogs
that can possibly occur. In this case, a good way to start is to think about the five most
common use cases. These can then be scripted as sample dialogs. In addition to every
successful dialog, designers should also think about what happens in case the user is not

34

4.2 High level dialog design

understood or simply does not say anything. The next example, dialog 4.2 is also taken
from the development process referred to earlier. It shows a sample dialog if the user does
not say anything.

VUI
[...] looked at his friend and then back to Joni, who was in front of him and blocking him.
How would you like to continue: shoot or pass?

User
–silence–

VUI
Oops! Please say that again.

User
–silence–

VUI
How do you want the story to continue: shoot or pass?

User
–silence–

VUI
Tap a button on the screen to continue

Dialog 4.2: Sample dialog for a failed dialog, in which the user simply does not say anything

Dialog 4.2 shows a situation that require error handling. Section 4.3.4 describes these
kind of situations more precisely. This sample dialog is an example for an unsuccessful
dialog. As can be seen in this example, it was the plan of the designer to ask the user
first to repeat the answer given before. If the user still does not say anything, which is
the case in this example, the VUI repeats the possibilities the user can answer. This is
done, because it is may possible that the user missed or misheard the options that are
available. If the user still does not respond, it is most likely that the user is not in front of
his device anymore, just does not want to answer or cannot answer because the situation
does not allow speaking loudly anymore. To prevent the VUI ending up in an endless
loop of asking the user for questions, it just asks the user to use one of the buttons shown
at the GUI. In this situation, a graphical hint is also shown on the GUI to indicate that the
user should use the visual buttons. This helps, if, for example, the speaker was muted and
the user cannot hear any of the help given through the VUI.

These are only two variants of this dialog, which is the core functionality of the appli-
cation developed during this thesis. There are many options, how the dialog can change.
For instance, the user can start speaking again after the VUI asked to repeat the first time.
Additionally, there are a lot of options on how to word the answer. The user can simply
say the command suggested by the VUI, but can also use her / his own words to para-
phrase what should be said. Mapping these answers is a problem that will be covered in
section 5.3.

Sample dialogs are very flexible, because they can applied to the development of every
VUI. It does not matter if the VUI only understands commands or if it is able to understand

35

4 Design of voice user interfaces

and manage whole conversations. Sample dialogs can always be used.
After writing dialogs, it is best to read them out loud. This gives a first glimpse of how

the VUI possibly sounds like. In some cases, spoken language sounds much different than
it looks like when it is written. At first, this can be done by the designer on her / his own.
After they are finalized by the designer, it is important to read them out with another
person. This is relevant to get a feeling for the interaction with the VUI. Each of the people
involved in this conversation imitates either the VUI or the user [90].

The second, very important tool for designing dialogs on a high level are flow diagrams.
They are best used after a few sample dialogs were written. Flow diagrams generalize
the sample dialogs in many cases. They illustrate the flow of the application state and
can be compared to call flow diagrams [53]. As a result, flow diagrams display all ways
a user can take to accomplish a task using the VUI. The generalization therefore treats
all possible answers, a user may give. Usually, they are grouped in only one way of the
flow diagram. An example would be an agreement. The terms OK, yes, yea and sure can
all be grouped to a single path in the flow diagram representing the agreement. This path
is then named with only one of the possible answers. Similarly, the responses given by
the VUI are only examples for a group of possible answers. In most cases, data changes.
Since data depends on the exact example, it is not a problem to generalize it.

Figure 4.2: An example for a simple flow diagram

Figure 4.2 shows an example of a flow diagram. It represents the sample dialogs de-
scribed previously in dialog 4.1 and dialog 4.2. As can be seen in this example, flow

36

4.2 High level dialog design

diagrams consist of a starting point, a sequence of processes and forks which result in
different branches and an ending point. Processes, represented as quadrangle, contain a
sample response of the VUI. This is a sample, because the wording can be different due to
variation or different data. Paths between processes represent what the user says. Similar
to what is said by the VUI, these terms are grouped. One of these groups is shoot. The user
does not necessarily has to say the exact word “shoot”. Depending on the implementation,
phrases like “I want him to shoot”, “make a shot” or even “kick the ball” are covered by
this branch. All of these phrases would recognized the same way by the VUI and lead to
the same node. This flow diagram shows only a small snippet of the whole VUI, which
is highly interwoven in this case. Therefore, reaching and ending point here means that
the process starts again, with the application reading out the next chapter. This is also
indicated in this diagram.

This is a very simple example. Especially for more complex VUIs, flow diagrams help
to structure the dialogs. It is then helpful, to organize functionalities into different flow
diagrams.

High level dialog design also includes steps to decide whether a dialog should be able
to use multimodality or not. Especially if the designer judges that it is suggestive to use
multimodality, this process also answers decisions on when to use another modality and
how to use it. Because this is mostly the screen, decisions have to be made on what to
show on the screen in certain situations so that all modalities fit together.

Especially if VUI and GUI teams are separated, it is important to use visual mockups
and wireframes, to clearly exchange the ideas. VUI and GUI designers must work closely
together to ensure a fine user experience. GUI designers usually care about the layout
first. This is often done by creating wireframes. They represent the skeleton of a GUI, only
concentrating on the layout. This is done without the usage of concrete content. Instead,
boxes and sample texts are used. Often, wireframes are designed without color. They are
only about the rough layout [34]. Figure 4.3 (a) shows a wireframe for the player of the
application developed during this thesis. The player is the visual representation of the
VUI in this application. As can be seen in this wireframe, there are no images selected yet,
neither are texts. It only shows the position of the images, headings and buttons. This can
be used as basis for discussions about the layout and for further, detailed work.

In contrast, a visual mockup shows the product closer to how it should look like when
it is developed. There is a wide range of mockups. They can be professionally designed
and look exactly like a screenshot or designed similar to wireframes but with real content.
Obviously, there are many levels in between. Which one should be used always depends
on the situation. Often, changes on existing GUIs can be shown by a professional mockup,
because screenshots of the existing software interface can be manipulated easily. In case
of a new GUI, this requires much more work. Therefore, it is often only used for larger
professional projects.

A mockup is a more detailed wireframe with concrete data and images close to the
final product design. It is obvious that there is a correlation between the wireframe and
the mockup. The mockup is based on the wireframe and extends it with more details. Of
course, designers can differ from the wireframe, if they realize, that the user experience
suffers while designing the mockup [34].

The contrast between a wireframe and a visual mockup can be seen in figure 4.3. This
figure is divided in two sections, (a) shows the wireframe and (b) the visual mockup.
The reader can easily realize that both are correlated to each other. However, the visual
mockup (b) shows many more details. Real texts are used, icons are used and, the style
of buttons is more detailed and includes colors. It is noticeable, that a mockup is closer
to the final design and therefore closer to a specific platform as well. For example, the

37

4 Design of voice user interfaces

design guidelines between Android and iOS differ dramatically [87] [81]. This starts at
the layout, but also includes different icon and font styles. As a result, different mockups
are necessary for different platforms.

Figure 4.3: Difference between a wireframe and a mockup

Mockups and wireframes are important for VUI designers, because they need to know
how the GUI will look like to make sure that the VUI fits to the GUI. The teams need
to work closely together and mockups are one of the most important ways to exchange
ideas.

Cathy Pearl additionally mentions prototyping tools in her book [90]. These tools help
setting up a simple prototype. They are just emerging. Starting from examples, the de-
signer provides the input on how to create messages. The designer can add parameters
and an actions that should be executed. This is a quick and simple alternative to test, how
a VUI feels like. Noticeable tools are api.ai [123], wit.ai [124] and Nuance Mix [18].

This section covered the basic tools to create dialogs at a high level. The results of this
step of the development process are the input needed for the next steps. These include the
detailed design of the dialogs. This step will be explained in the next chapter. High level
design decisions are also important as a basis of decisions regarding technical questions.
A more technical overview will be given in Chapter 5.

38

4.3 Detailed dialog design

4.3 Detailed dialog design

After the dialogs are designed at a high level, they need to be elaborated. Therefore, the
designers have to take a closer look to the dialogs themselves. The goal is always to create
dialogs that are as natural as possible so that the user does not have to learn anything
new. However, people are constantly using new ways to interact with UIs. Although, this
always takes a while until users are familiar with new interaction ways. This happened
to common gestures used with touchscreens and will also happen with VUIs [16]. In
the meantime, VUI designers have to make sure people can use what they are used to
when communicating with other humans. The overall goal of a VUI must be to provide a
benefit. Therefore, good quality is necessary. Until now, the main focus was on the speech
recognition. Today, this shifts more towards conversational dialog design and NLU [90].
The design principles aim to minimize cognitive load, maximize efficiency and clarity and
ensure a high accuracy [17].

Detailed dialog design concentrates on the correct wording at first. This is even more
important if the VUI does not have a visual component. Especially in this case, it is very
important that dialogs are kept short and easy to understand. Therefore, data and options
should be displayed short. If a screen is available, it can be used to display more complex
data. But if not, the user should only have a few options to choose from. Options can be
shortened by reading out only two items and telling the user that there is more. Another
strategy to avoid this situation is to simply do not offer any options at first and only
give the user options on how to go on as help. Then, the VUI obviously must be able to
parse much more possible inputs. It also depends on the users knowledge. If the user
already knows enough about the application, then she / he can easily interact with it in
the absence of any given options.

For lists, the number of items can easily be reduced by asking a few questions before
displaying them. As a result, lists are filtered. Additionally, the lists can be read out faster,
if the user only has to review the data. If the user should be able to select or edit an item,
lower reading speed helps the user to keep track of the data [91].

A good dialog design makes it clear to the user what to do next. Therefore, if the VUI
asks a question, this question should be placed at the end of the response. For instance,
there is a big difference between “What should Ahmed do? Shoot or pass?” and “Ahmed
can either shoot or pass. What do you want him to do?”. The latter output puts the
question to the end. This prevents the user from directly answering the question. This
is the main problem. Because most users tend to answer questions straight away, they
interrupt the VUIs output.

If options are available, they should be clearly presented. Designers should therefore not
present more than three choices and keep the explanations brief. However, the explanation
does not have to be short each time, because designers cannot assume that the user knows
what to do (especially for new users). If complex tasks can be accomplished through
the VUI, they need to offer enough possibilities to get help. Users should be able to ask
anything and get sufficient explanation. To not confuse the user, only questions necessary
should be asked by the VUI. As a result, designers should find out, if the data really needs
to come from the user or if it can be received in a different way. An example for this can
be the type of a credit card. By asking for the card number first, the system often can infer
the type of the card because it is coded into the number. Additionally, a question for data
should only refer to a single piece of information at a time. This helps to not confuse the
user. Instead of saying “Please tell us your credit card information. We need the credit
card number, the expiration date, the name of the cardholder and the security code.” the
VUI should ask: “OK, we need your credit card details. What is your credit card number?”.

39

4 Design of voice user interfaces

Note, that the latter expression also includes a question whereas the first one does not.
Questions help the user to know when the system’s turn is over and when the user’s turn
starts. User prompts also help, if it is not possible to ask a question. Those expressions
also should not contain any special texts or shortcuts. If these are necessary, they need to
be explained. Tech or legal terms should be avoided.

When reading information out, it should be done so in consumable pieces. For example,
letting the user review the credit card information, the VUI should not read out all the
information at once followed by the question “Is that correct?”. Instead, similar to the
input, each piece of information can be checked at once. This could be something like
“The credit card number is 1234 5678 1234 5678. Is this correct?”.

The VUI should also never blame the user for doing something wrong. Since there are
no limitations, VUI designers need to expect the unexpected. Speech is an unconscious
activity. As a result, users do not think about the choices they make, their pronunciation
or their sentence structure. Additionally, the user should always have a way out. On a
desktop, the user can easily close the window. Because this is not possible using a VUI,
the user must have an easy way to return to the main menu or start over. Also, designers
should expect users to ask for help.

Furthermore, it is noticeable, that designers should always rely on text, not on intona-
tion. Intonation can change due to the used text to speech (TTS) system [1].

The biggest design challenge when interacting only through sound is that the data is
non persistent. This means that after the data is presented via the speaker, it is gone. In
contrast, a screen shows data for a much longer time. Also, the user has no possibility
seeing what the system has understood. As described in section 2.2, this can be compen-
sated by the usage of multimodal interfaces. Even a small screen can significantly reduce
cognitive load, if it is combined effectively with the VUI [17].

The details of the dialog design is mostly about the language. It is important that words
are carefully picked, because they are always context sensitive. Especially when connect-
ing utterances to a full conversation, the cohesion between single expressions is important.
It is the glue that keeps the conversation together. In spoken language, it is very important
that pronouns and time adverbs are replaced with information given before. Also, it is
important to use discussion markers. These help to keep track of where the conversation
currently is. There are a few categories which should be used to structure dialogs [93]:

• Enumerations like first, second, for one thing, to begin with, next, lastly ...

• Reinforcing such as furthermore, moreover, in addition, above all ...

• Equative for example equally, likewise, similarly, in the same way ...

• Transitional like by the way or now

• Summative like for example then, in conclusion, to sum up ...

• Apposition such as for example, for instance, that is ...

• Result like hence, so, therefore, somehow ...

• Inferential like else, then, in that case ...

• Reformulatory like for example better, rather, in other words ...

• Replacive for example alternatively, on the other hand ...

• Antithetic like instead, in contrast, by comparison ...

40

4.3 Detailed dialog design

• Concessive such as anyway, besides, however, still, yet ...

• Temporal like for instance meantime, meanwhile ...

• Attitudinal actually, strictly speaking, technically ...

Making sure dialogs contain those words help the user to orient in the dialog structure.
Cohen et al. call this conversation management. It can be used to gently indicate the user
what the next step is. Additionally, expressions like by the way can be used for just in
time instructions. Using the word Oh indicates a cognitive mismatch and can be used
to indicate that something was misunderstood. If people recognize the word Oh they
feel not blamed and accepting that something went wrong. Designers should make sure
to not use it too often [103]. Expressions like actually are considered to be the real truth
and can be seen as a reaction to go forward. It is also used to indicate other options
and to recover from errors. If more than one option is available, designers can make use
of the term otherwise. It mostly indicates unpredictable options. User feedback is very
important, telling the user that what she / he said was understood, can simply be done
by starting with the word Okay. Letting the user know that she / he was understood is
considered polite and so is being sorry. If something goes wrong, the VUI should be sorry,
as humans would be as well in this situation. Designers should be careful with the word
must. It indicates a social, interactive meaning and carries also a logical, probability. It is
very strong. Often, it can be replaced so it is still available for very important sentences.
In contrast, may socially means asking for permission. Its logical meaning is to indicate
possibilities. Therefore, designers should be aware of its usage.

These words are all English. However, it is important to note that similar words exist
in every language.

Not only the words are important, the sentence structure is also. Open-class sentences
leave room for other information and speculation, whereas closed-class sentences do not.
The designer should tend to use close-class sentences, but this is up to the particular
situation. In general, the old information known from previous parts of the conversation
is called “topic” and the new information in a sentence “subject”. What comes last in an
expression is automatically in the focus of the listener (End-Focus Principle), so designers
should make sure that the subject comes last. As a result, listeners remember the new
information better. A tool to achieve this is the usage of active or passive voice.

Designers should be aware of differences between spoken and written language. There
are usually words in every language that are only used either written or spoken. In English,
one of these examples is that and this. That is used in spoken language, but this points
forward and is therefore not usable in spoken language, because the listener does not
know what comes next. Additionally, especially in spoken English, contractions should
be used because they are more natural. There are also differences in grammar which need
to be considered. For example, in English there is a difference between the future forms
will and going to. Whereas will indicates a spontaneous action, going to usually points out
planned intentions and shows, that the future is on the way.

These guidelines help to create better dialogs in general. However, there are some
specific aspects designers have to consider. These will be explained in the next sections.

4.3.1 User confirmations

The user needs feedback. Because the user cannot see what the input was, the VUI must be
able to confirm what was understood. The problem is, that not every transaction should
be confirmed. Over-confirming drives people crazy and should always be prevented. As
a result, designers should make sure that actions of high consequence (publicity visible

41

4 Design of voice user interfaces

/ money or other people involved) will be confirmed by the user [1]. This means, that
the system explicitly has to double check the action or at least will be asked without a
reaction.

A good work flow for designer is not to use a confirmation and then think about what
would happen if the action goes wrong. Depending on how bad the consequences would
be, designers can then decide to provide feedback on different forms. An additional screen
can help providing feedback in an explicit, but not too bothersome way. A screen could
also be the best choice, if the type of information that should be confirmed cannot be
described good using speech.

In general, there are two types of confirmations: explicit and implicit confirmations.
Explicit confirmations asked the user directly to confirm, such as the expression I heard
set the timer, is that correct? does. Only if the user confirms, that what the VUI understood
was what the user actually meant, the action will be performed. In contrast, implicit
confirmations encourage the user to interrupt, if something was misheard. An example
for an implicit confirmation would be: OK, setting the timer. This expression repeats what
was understood and performs the action. If the user did not want to set a timer, this can
be easily undone. In this case, the user could also quickly say, that the action should be
canceled.

Deciding when to use which type of confirmation is usually up to the designer. This
decision can be made for every single dialog, but can also be decided depending on
the confidence of the speech recognition system. The results of the speech recognition
are usually ordered by their confidence or contain a value of confidence. For example,
the system can ask for implicit confirmation if the confidence is higher than 80 percent;
use explicit confirmation if the value is between 80 and 45 percent and tell the user that
nothing was understood if the confidence is lower than 45 percent. These values obviously
need to be adjusted depending on the situation.

Depending on the system, there are other ways of confirming the action. For instance, if
the system controls the home, turning off the lights can just result in turning of the lights.
If this goes wrong, due to misunderstanding, it is not a problem for the user. If everything
is as expected, the user can actually see that the lights turned off. This does not have to be
confirmed separately. If it takes a few seconds, no confirmation is needed in such cases. In
case there is a delay for more than a few seconds, the user should still get a confirmation.

Generic confirmations like Okay already help to create a more conversational VUI. De-
velopers can randomize them and add them to many dialogs. This gives the user a more
conversational feeling and also the safety that what the user said was understood.

Especially if the user inputs complex information, it is helpful to use a screen to display
the data and let the user confirm. Users mostly cannot remember more than seven items,
even if they said them themselves. The visual confirmation gives the user also more time
do decide, if the data was correct [90].

4.3.2 Stop detection

To create a natural and fluent conversation it is very important to detect when one par-
ticipant has finished speaking. Then, it is required to take turns in the conversation. The
timeout in which nobody speaks and which marks the turn is called “stop”. Unfortunately,
detecting stops is not always easy. Human speakers vary the duration of steps depending
on the conversation. A good VUI has to recognize this.

The VUI needs to be trained on the duration of pauses and when to detect stops. Oth-
erwise, this results in an awkward dance of starting and stopping the speech recognition.
The normal timeout should be around 1.5 seconds. However, it should be flexible since it
is different in various states. Sometimes, users need to read out complex data and pauses

42

4.3 Detailed dialog design

to group the data. This is for example the case when reading out a credit card number,
which is usually naturally grouped into four digits. The VUI need to be able to wait longer
in such cases, so the time between stops needs to be flexible. The timeout itself therefore
depends on the data.

A no speech timeout (NSP) describes the end of the conversation. This is the case,
when nobody says something for a longer time. A recommended duration is ten seconds.
Sometimes, NSPs are unexpected and should result in error handling. If the VUI detects
multiple NSPs in an unexpected step of the dialogs, this indicates that the user is stuck.
Then, the VUI should provide some additional help. Developers should try to keep track
of NSPs and figure out, why they happen. Designers also can think of their dialog design
and imagine, what would happen if the user simply does not say anything.

In contrast to a NSP, the user also can speak too much in a short amount of time. This
is normally the case because of limitations of the speech recognition software. In general,
this is called too much speed (TMS). If this happens, the VUI should gently try to give the
user hints to shorten the input [90].

4.3.3 Helping the user

One of the major problems of VUIs is that information is volatile. The user cannot look at
it as long as she / he wants to. After the information is displayed, it is gone. This requires
special actions as the user might not get all of the information which was presented or
could not understand everything. In many cases, the user therefore needs to get help.
This can be done by providing more information about what is expected or by providing
examples.

Another way of helping the user is by using disambiguation. This is mostly necessary
because humans are not always clear and VUIs run into the same problem. There can
be different cases, in which the VUI needs to disambiguate. First, there can be a lack of
information. The VUI then simply has to ask for more information. Second, there can
be too much information or multiple answers that might match. Designers then have to
decide, how to handle these situations. They can decide to simply take the first matching
answer, reject all possible answers or disambiguate by focusing on one answer and asking
the user again for clarification. Which way to choose is up to the data and to the confidence
of the accepted answer.

In general, the user should not be told every specific constraint. Instead, the VUI should
give the user the freedom so that the user can indicate her / his answer defined in the
user’s own words. If something goes wrong, the VUI can try to automatically correct the
input or disambiguate. Figure 4.3 shows an example of such a case. The user tried to call
a person, but the VUI realized that there are two different phone numbers that match.
Consequently, the VUI does not know which one to call. There is a lack of information.
The VUI then asks the user to provide more information: “Call Ingrid, sure. Mobile or
home?”. Additionally, this disambiguation is supported by displaying both options at the
screen. The user has also the option to use the screen as an input method by tapping the
preferred number. In case the user does not say anything or does not provide the needed
information, the VUI tries to help the user with a more detailed help message. In this case,
Google Assistants output was: “To keep going, just say which phone number you want to
use. For instance, you can say the first one”. If the user still does not answer in a helpful
way, the VUI tells the user to use the GUI by saying “Go ahead and tap one of the options
on the screen”.

If a user does use the words either, neither or nor, the VUI has hints to decide on which
answer it should decide for. It can also use these words while outputting information
which increases the credibility of the system.

43

4 Design of voice user interfaces

(a) Audible disambiguation with simple
support on the screen

(b) Disambiguation with hint on the screen
after no input

Figure 4.4: Disambiguation on the screen

Also, the user should never have the feeling that she / he has been left hanging. If
the VUI needs information, it should ask for it. As long as the dialog continues, the VUI
always needs to give the user a hint for what is expected [90].

Helping the user also includes making sure, that the user can ask for help in all situa-
tions. Expressions like I’m confused, Uggh or Where am I? should immediately trigger help
for the user.

4.3.4 Error handling

Another result of volatile information is that a VUI needs high-quality-error-handling
capabilities. In the best case, it should not be visible to the user that an error has occurred.
However, today’s speech recognition technologies still do not have high enough accuracy.
As a result, good error handling is essential for an acceptable user experience. In addition,
designers should keep in mind that errors count much more than successful workflows.
Therefore, designers have to understand that neither humans nor machines are perfect
and this should be understood by the user. In fact, every error is recoverable. Abi Jones,
design lead at Google, describes this fact as follows: “When you talk to a human being,
there is never an unrecoverable error state” [90].

There is a set of common errors. First, the VUI can reach a state, where no speech was
detected. The solution is then to ask for more input (speech) explicitly. This should be
done, if the VUI is audio only and not supported by a screen. If there is a GUI available,
it might be an option to do nothing and wait for the user to react. Second, speech can be
detected, but not recognized. Then, the user should be asked to repeat what was said or
the VUI can remain silent, so the user repeats her- / himself. Third, a common error is
to recognize the speech but not being able to match it and not having an answer. This
should be avoided in all cases. Lastly, the VUI can recognize the speech in a wrong way.
An incorrect recognition can happen, if the automatic speech recognition tool returned
the wrong text. This can sometimes be avoided by working with N-best lists as results,

44

4.3 Detailed dialog design

so the VUI does not depend on a single result from the speech recognition. However, in
this case, the user must be able to correct the VUI. Most users do anticipate the next step
and therefore realize, if the VUI recognized something incorrectly and behaves in another
way than expected.

If an error occurs, it needs to be escalated. There are several ways to do so. For example,
in a first step, the user could be asked to say the city and state. If this does not result in
an acceptable answer, the VUI can give an example. For instance, the VUI could help by
saying Please provide the city and the state, like in Los Angeles, California. For most users, it is
easier to copy patterns than to understand them without examples. If this does not work
either, the next step is to ask the user to write (if a GUI is available) or spell it. In all cases,
the user should never be blamed [90].

The first challenge is to find out, what the problem initially was. A common cause for
errors is an expression, which is not grammatically correct. This means, that whatever the
user said, could not be matched to the grammar defined by the VUI designer. If the VUI
still accepts false speech recognition results that can cause serious problems. Obviously,
the best case is to prevent errors, which is described in section 4.3.1. If the cost of a fail
is low, the worst that can happen is that the user loses a few seconds. If the user is able
to barge-in, which means to interrupt the VUI speaking, this is most likely even less.
Recovering from errors is then easily possible, because the user tries to correct the VUI by
her- / himself. From time to time, it is also recommended to confirm grouped items. This
increases efficiency and also the confidence in the system itself. Designers and developers
also must make sure that the VUI recognizes if the user is doing the same mistake over
and over again. This should result in a more detailed error message, so the user realizes
what was done wrong. Additionally, VUI developers should keep track of cases like this
(e.g. in log files) so designers can react to possibly misleading dialogs.

The most important aspect is to understand the root cause of an error. This can be the
dialog where the problem is discovered. However, these kinds of errors can usually be
corrected by the user itself. It is more problematic if the root cause lies in previous dialogs.
Then, it is often not very easy to figure out where the problem comes from.

If the user runs into a problem, it is not very helpful to describe the problem in more
detail. Instead, the VUI should offer the user help so the process can go on. This can be
done by showing another way out of the problem.

In general, errors can be handled by giving the user more specific help about what is part
of the grammar definition and what went wrong. Then, the escalation is for more details.
It is helpful, to provide examples in these cases. This procedure is called progressive
prompting [121] [118]. If it is clear, what to say, then the VUI can also perform a rapid
reprompt. This is a short expression indicating that the system did not understand what
the user said and none of the options which were possible could be matched. The easiest
way to indicate this is the expression I’m sorry. This gives the user no detailed information
about what went wrong and therefore sometimes requires an extra step. It should also
not be used in open questions because the user has too many options to answer. However,
rapid reprompting can be used as general first level error handling. If the user still has
trouble, the VUI can then give a more detailed help message. Whenever rapid reprompts
are used, their wording should be diversified. Rapid reprompts are in most cases preferred
by users as shown by some experiments run by nuance. The results of these experiments
are shown in figure 4.5. It shows, that 80% of the users prefer rapid reprompts.

The user should always have the possibility to escape, with commands that are already
known. If an error is already known, a second error of the same type, which is occurring
again, should be handled in a different way. This can be alternative wording. After an
error occurred for more than the second time in a row, the VUI should offer another way

45

4 Design of voice user interfaces

Figure 4.5: Result of user’s preference regarding error recovery [17]

out of the situation [17].

4.3.5 Voices and intonations

The output of the VUI is not only about the wording, it is also about how something is said.
Today, speech synthesis is good enough to create different voices and / or intonations.
These should be used, so that the VUI fits in the use case it should fit in.

As David Crystal [20] points out, language carries both a verbal and a nonverbal mean-
ing. The nonverbal meaning describes the prosody. It helps the user focus on what will
be heard and also helps to get the right context. This is done by giving aid to identify the
grammar structure. It is often the case, that the same words have different meanings. Then,
intonation and / or grammar can be used to clarify the meaning. Also, the intonation can
mark the important parts in a sentence.

Stress in the context of intonations can change the meaning of words. It is defined as
the variation in loudness that differentiates strong and weak syllables. It helps the users
keeping track of the conversations. This is because stress can be used to highlight the new
information in a sentence. As a result, it gives designers more options to structure their
output.

There are many default patterns, which help to create a more natural VUI. These pat-
terns vary from language to language. In this document, only the most important ones
will be mentioned. The most common patterns are:

1. Rising-Falling, final: usually indicates declarative sentences

2. Rising: indicates questions, that can only be answered with yes or no (polar ques-
tion)

3. Rising-Falling, non-final: this pattern is used in more complex sentences

The intonation is especially important when concatenating messages. Lists, for exam-
ple have different intonations depending on the position of the item. If another item is
following, the intonation rises. For the last item, it falls. Polar questions, which can ei-
ther be answered with yes or with no, are usually indicated by a rise of the intonation.

46

4.3 Detailed dialog design

In contrast, questions asking for more complex information are implementing pattern 1
(rising-falling, final) when asked for the first time, but using pattern 3 (rising-falling, non-
final) when asked for the purpose of repetition or clarification. Either-Or questions are
basically the same than lists with only two items and behave in exactly this way regarding
their intonation.

In written language, pauses are indicated by commas. Obviously, this is not possible
in spoken language. As a result, there is additional silence needed after nonrecognition
messages or if there are commas or colons. No silence should be used if between the end
of a paragraph and the beginning of another one. Also, some colons are purely graphical
and should not cause a pause. This is for example the case, if a time should be read out.

47

5 Technological design

This chapter describes the technological background of a VUI system. Because this system
is very complex, it can be divided into multiple sub systems. Each of these systems will
be described in this chapter. It is important to have a basic understanding of how these
systems work in order to put them together to the whole VUI system. Due to the focus of
this thesis, the components will not be explained in detail. However, the basic underlying
theory will be explained.

Figure 5.1: Overview of parts of a VUI application [13]

Figure 5.1 gives an overview about all the components that are typically part of a VUI.
Before the VUI starts its work, the user input must be captured. This can be done by the
application itself, but can also be part of the VUIs functionality. The audio result, in figure
5.1 referenced as user input, is the data that the VUI starts its work with.

The first step is the speech recognition system. It analyzes the audio file and outputs
the understood words. It recognizes the words. Usually, it has knowledge of a vocabulary.
Therefore, it is often necessary to configure the speech recognition module with the lan-
guage that should be understood. Modern speech recognition systems also analyze the
intonation of the speaker and return data about the speaker’s feelings. After the words
themselves were recognized, the next module takes over. The NLU module tries to under-
stand the words and checks, if the understood words make sense. This module can correct
the speech recognition, because it knows about the grammar and the semantic rules of
the language. Additionally, this module tries to understand the meaning of the words.
Therefore, the module combines the feelings and the words. The third step is reasoning.
The dialog manager (DM) is the heart of the VUI. It has a strategy to understand what
was said and decides how to respond to the input. The strategy therefore represents how
the VUI acts. Its result is the input for the next step: the response generation. The output is
the answer to the user. The response generation includes the creation of a text that will be
used as a response to the user. The last step is the speech synthesis. It turns the generated
text into audio. This audio is the output produced by the VUI and the response to the user
[13].

49

5 Technological design

The following sections describe these modules. Therefore, their internal functionality
will be described. Furthermore, these sections give the reader an idea of what can currently
be done and, more important, what not.

5.1 Speech recognition

The purpose of the speech recognition module is to translate auditory input into text.
Speech recognition is not speech comprehension. It only gets the text out of an acoustic
signal [13]. Therefore, the recognized signal must be interpreted. In this section, the word
signal will always be used to describe the auditory input of the speech recognition module.
The speech recognition only translates the signal into text. It does not check any semantic
or syntactic language rules. Due to this fact, it can occur that the result is not a proper
sentence that is based on the languages grammar. A correction of this is of course done in
later processing steps.

This chapter first explains the general technologies that are used to analyze the audio
signal and match the signal to words. This is the main purpose of the first subsection. In
a later part of this section, different speech recognition services will be compared. This
includes not only a comparison of their pricing and availability, but also a comparison of
their performance. This comparison is done due to the fact, that one of these providers
has to be used for the project described in this thesis (see Chapter 6).

5.1.1 General technologies

This section describes the general technologies that are the basis of most modern speech
recognition modules. Different speech recognition engines rely on different technologies.
First, there are differences which acoustic units engines use for recognition. Some use
words (especially if the vocabulary is small) and others use syllables to interpret the
phrases. Syllables are especially necessary for recognition if the vocabulary is large. The
underlying mathematical model is often statistically. Most modern systems are based on
hidden Markov models (HMM).

HMMs are one option to create a signal model. The term signal is here used to describe
every observable output of real world scenarios. A model helps to process the signal, learn
about the signal source without having the actual source available or to realize practical
systems, such as speech recognition. Signal models can be deterministic and use specific
properties of the signal. If not, the models are mostly statistical. Since most of the models
for speech recognition are statistical, these are in the main focus of this section. Other
types of statistical models are Gaussian and Poisson processes. However, this section
concentrates on Markov and hidden Markov processes.

Markov processes describe a relationship between N distinct states. In a simple model,
each state is connected to each other state. This can be seen in figure 5.2. If this is the
case, the model is called fully connected Markov model. Each edge is captioned with a
probability aij. It describes the probability of going from state i to j. Obviously, the sum of
all aij per state must be one. In addition, each aij has to be bigger than zero.

In a Markov model, the probabilistic description is only based on the current and the
previous state. This example describes an observable Markov model. In an observable
Markov model, the output is the set of states at each time where each state corresponds
to a physical event.

In contrast, the stochastic process of a HMM is not directly observable. It can only
be observed through another set of of stochastic processes that produce a sequence of
observations. If this case, the main questions on how to design the model are: What are

50

5.1 Speech recognition

Figure 5.2: A fully connected Markov model [94]

the states and how many states should be in the model. A HMM can be described through
five elements:

• N describes the number of states in the model

• M is the number of distinct observation symbols per state

• A is the definition of the state transition probability distribution

• B describes the observation symbol probability per distribution in state j

• π is simply the initial state distribution

A HMM can be used to generate observation sequences like O = O 1 O2 ... OT. There are
a lot of different ways because of many different states and many different probabilistic
values on how to change from one state to another. A compact notation for a HMM is
therefore often described as λ = (A, B, π).

In speech recognition, each word in the vocabulary gets its own N-State HMM. The
signal is recognized as spectral vectors. These vectors are represented by codes, which
can be mapped to the states. Training data helps to learn about the physical meaning of
each state. By comparing a model to all other models, new words can be recognized. The
word is then represented as the word whose model fits the best.

There are different types of HMM. The example described above shows a fully con-
nected HMM. This type of HMMs are characterized by the fact that each state is connected
with every other state. Depending on the use case, other types of HMMs may be more
useful. The left-right-model (or Bakis model) is often used for speech recognition. In this
type of model, no transitions to states whose indices are lower than the current states
index are allowed. In other words, there are no backward moves possible. Sometimes,
there are additional constraints added. One of these can be the limitation of the jump

51

5 Technological design

size. That means, that a forward move can only be made to indices lower than the current
index plus the maximum jump size. This type of model includes many more variations.

Other types of models are continuous observation densities, autoregressive HMMs and
more. An overview of them can be found in cite [94].

There are a few implementation problems, which could be solved in the past decades.
First, HMMs have problems with scaling. The computation quickly exceeds the precision
range of computers. Second, much training data is needed. Especially left-right models
cannot be trained with a single observation sequence. The third problem describes the
difficulty to estimate the initial parameters. HMMs have many local maximums. The best
initial parameter would be the global maximum, but it is difficult to set it to the local
maximum so that this local maximum is also the global maximum. Unfortunately, there
is still no sufficient answer. However, random initial states are adequate in most cases.
Another problem is the choice of the model size and the type. There is no answer for this
problem, each choice has to be made for every signal being modeled. The last problem is
missing training data. In the past few years, an enormous increase of training data was
observed. Today, much training data is available and this problem is obsolete.

While designing an HMM for speech recognition, there is another challenge: back-
ground silence. This can be be solved by detecting it and discriminating it, building a
model that includes the background silence or subtracting the background silence from
the signal [94].

There are other modeling approaches as well. Deterministic grammar approaches try
to describe the words as a graph. Unfortunately, the model is not very flexible. As a re-
sult, the recognition hardly understands malformed sentences. Additionally, designing
the grammar is very complex. Another approach is large vocabulary continuous speech
recognition (LVCSR) [12]. This approach has no constraints and is based on a large dic-
tionary. It is often used for specialized tasks. LVCSR makes use of N-grams, which are
explained in section 5.2. They give the user the most freedom, which means the speech
recognition is very flexible.

It is extremely important, that the speech recognition provides a good performance.
VUIs need to recognized speech almost in real time. Because other steps are also necessary,
the speech recognition cannot take too much time. Especially if the user should feel like
in a real conversation, the system cannot wait for a long time on the result. There are two
major ways to improve the performance: optimization and parallelization.

To optimize the recognition, the system should only compute the top N alternatives. N
can be a parameter. However, a value around five is more than sufficient. Speech recog-
nition systems can then approximate other words due to their positions in the sentence.
Therefore, they use beam search (see [85] for more details about beam searches) to reduce
the options.

Parallelization can be done by distribute the computation. Fortunately, the computation
of HMMs can be split very easily. Furthermore, graphical processing units (GPU) are
optimized for such mathematical calculations. Therefore, the speed can be increased by
a factor of five when dividing the problem and compute it in a distributed environment
using GPUs [13].

Today’s speech recognition already produces high quality results. However, the speech
recognition modules still have to deal with the same problems and they are still difficult
to solve. Almost 90% of the use cases used while developing a VUI are ideal situations.
This means an adult male speaking in a quiet room with no background noise and a good
microphone. However, this is almost never the case in real world scenarios. Instead, VUIs
have to deal with constant background noise and often even worse: side speech. In such
cases, Karen Kaushansky shares the opinion to not tell the user to move to a less noisy

52

5.1 Speech recognition

place. Instead, the problem should be escalated and the user should be offered help. If
this does not help either, the user should use the GUI.

Sometimes, another problem for the speech recognition occurs: multiple speakers. Users
are usually not alone. Then, the speech recognition must be very careful with its interpre-
tation. However, modern systems are able to also analyze the voice and make sure only a
single voice is interpreted. Additionally, children are a problem. They are often harder to
understand. Furthermore, there is less training data for the speech recognition system to
train it for children’s voices. If the VUI is not completely sure, it should simply move on
or show graphical alternatives.

Spelling can be extremely difficult for speech recognition systems. Especially names are
very hard to understand for the system. One problem is, that they are often differently
spelled, but sound the same. Another problem is that names are often not part of the
vocabulary. It can then be helpful to check the users address book. If accessible, more
user data can be very helpful for the speech recognition process and increase its quality
significantly. If there is no chance to understand, what the user was saying, the GUI is the
best solution. Sometimes, the speech recognition module can make use of additional data.
This includes checksums of credit cards or a simple check for postal codes [62].

5.1.2 Comparison of existing speech recognition software

There are a number of existing services available. This section compares them. As a result,
the best available software will be used in the application developed during this thesis.
The comparison focuses on web services. For the comparison, two different audio files
are used. The first audio file is professionally recorded and available from Google Cloud
Storage [40]. The spoken text is How old is the Brooklyn bridge?. In this writing, it will be
named as sample 1. The second audio file was recorded using a built-in microphone from
a laptop in a normal environment. There are no significant background noises, but the
quality is worse than the professionally recorded audio file. Especially the volume level
is lower than the one of sample 1. It will named sample 2 for the following comparison.
The text which was recorded is The quick brown fox jumps over the lazy dog.

Cordova plugin

The plugin provided by Cordova uses the speech recognition classes provided by An-
droid or iOS (Siri), respectively. It wraps the functionality of the operating system into
a commonly usable API. The usage is free of any cost, but it requires an active internet
connection because the system communicates with Google or Apple servers.

This module is used in the implementation part of this thesis. Therefore, a description
of the API can be found in paragraph 6.4.3. The following information is based on the
Android version of the module. The reason for this is that the development was only done
for Android, because developing an iOS application requires a more complex and more
expensive development environment. This environment was not available for the thesis.

The plugin can be configured to return a number of N-best results. How many results
should be returned can easily be configured by setting a parameter. The default is five.

The Cordova plugin internally calls the APIs of the underlying operating system. Be-
cause this thesis only includes the development of an Android application, the API called
is always Google’s Speech API [7]. Since this API is already part of the comparison, the
Cordova plugin will not be tested as an additional API.

53

5 Technological design

Google Speech API
Google also offers a representational state transfer (REST) API for it’s speech recognition
API [42]. Unfortunately, the usage of this REST API is not free. The prices, by the time of
this writing, can be seen in table 5.1.

Table 5.1: Prices of Google’s REST speech API

Monthly usage Price per 15 seconds

0 - 60 minutes Free
61 - 1,000,000 minutes $0.006

To access the Speech API, it is required to create a project in Google’s Cloud Platform
console. The speech API must be enabled and a service account has to be created. Then,
in a first request, the project has to be authenticated. This request returns an access token,
which can then be used to send a request to the actual API. A detailed guide can be found
at [41].

Both sample audio files were sent to the REST API. A response from this is formed in
JSON and contains a set of alternatives. Each alternative contains a transcript containing
the text that was recognized. In addition, the confidence level is also returned. The exact
results as JSON can be seen in appendix C.

Table 5.2 gives an overview of the results. For sample 1, the API returned the exact text
without a question mark. This indicates, that the understanding of the rising intonation at
the end of the audio is not perfect. The confidence score of 0.987629 indicates that the API
is very sure about what was understood. In fact, this result is very close to the original text.
It is still noticeable, that the sentence starts with a lowercase character. The API returns
very good results for sample 2 as well. The recognition is only slightly different to the
original. Instead of the present version of the verb jump, the past version (jumped) was
recognized. However, the confidence score indicates a very high confidence, which can be
misleading. Although, the confidence level is high enough to properly process the answer
in most cases.

Table 5.2: Result of sample audio files from Google’s REST Speech API

Recognized text Confidence score

how old is the Brooklyn Bridge 0.987629
the quick brown fox jumped over the lazy dog 0.97975445

Bing Speech API

Similar to Google, Microsoft provides an option to use speech recognition as well. The
Bing Speech API is part of Microsoft’s cognitive services which can be used through
Microsoft Azure [77]. Like Googles API, Microsoft’s service is not free. Their prices can
be seen in table 5.3. It should be noted that each transaction can only contain utterances
up to 15 seconds.

This API was also used to recognize both audio samples. Microsoft’s API does not
require to set up a project, but the API needs to be activated using an account. A subscrip-
tion key can be assigned to this account. From then, this key can be used to request an

54

5.1 Speech recognition

Table 5.3: Prices of Microsoft’s Bing Speech API

Monthly usage Price per 15 seconds

5000 Transactions Free
Additional 1000 Transactions $4

access token. Similar to the Google API, this access token must be included in the request
to the actual Speech API. A detailed guide is available at [76].

Microsoft’s API also returns it’s response as JSON. The complete result can be found
in appendix D. In contrast to Google’s API, this API contains a parameter to define how
detailed the result should be. This parameter is called format and can either be set to simple
or detailed. If set to simple, the response only contains a single transcription. If set to detailed,
it contains a set of results as N-Best list, including confidences. For both samples, both
response formats can be seen in appendix D.

The responses of the Microsoft API can be seen in table 5.4. It shows both the simple and
the detailed results. For sample 1, the detailed result only returned one result. For sample 2,
there are five entries in the list. These five results can also be seen in the table. They are
listed sequentially. This API has no trouble recognizing sample 1. Even the question mark
is recognized correctly. As can be seen from the detailed result, the confidence is still only
at a value of around 95%. In contrast, the second sample is not recognized very well. None
of the returned examples contains all of the words of the original text. The closest result is
the fifth one, which is indicated with the lowest confidence score. However, applications
can react to a low confidence score. The score is never higher than 82%, which is mostly
considered not high enough.

Table 5.4: Result of sample audio files from Microsoft’s Speech API

Sample Recognized text Confidence score Format Comment

1 How old is the Brooklyn bridge? - simple
1 How old is the Brooklyn bridge? 0.95739913 detailed Only one result
2 Brown Fox jumps over. - simple
2 Brown Fox jumps over. 0.8211723 detailed First entry
2 Brown Fox jumps. 0.8211723 detailed Second entry
2 Call Brown Fox jumps over. 0.7018736 detailed Third entry
2 Call Brown Fox jumps. 0.7018736 detailed Fourth entry
2 Brown Fox jumps over the lazy. 0.7018736 detailed Fifth entry

wit.ai

Using wit.ai, developers can create entities. Whenever the application sends audio to
the wit.ai interface, the service tries to understand this audio and maps it to the defined
entities. Entities are defined by example. As a result, the developer only needs to provide
a name for the entity and a set of example utterances. These can be added as written text
or as audio (because wit.ai turns the audio into text and maps it to the entities). The more
examples are provided, the better is the accuracy of the service. An example set could be

55

5 Technological design

What’s the temperature?, How high is the temperature in here? and How warm is it?. All of these
phrases are questions asking for the current temperature. From a technical perspective,
this can be described as a get request for the value of the temperature. If the user now asks
What’s the temperature in here?, the system will map it to the entity which was trained with
the given utterances. This works even that this specific phrase was not in the training set.

The application offers a web API (there are clients for NodeJS, Python and Ruby avail-
able). The API can receive text and audio. If received, the application created in wit.ai
tries to map the phrase to one of the defined entities. It returns the entity including a
confidence level.

However, the real value of this service can be seen when the developers start to mark
variables. For example, instead of getting the current temperature, the user could also try
to set the temperature. Then, most user would use a phrase similar to Set the temperature
to 75 degrees. In this example, the number 75 can be exchanged with other values as well.
Wit.ai suggests to use it as a variable. In addition, developers can help with their knowl-
edge and define phrases, values, locations and more as variables. Therefore, wit.ai has
many built in types of variables. If an entity supports variables, the resulting response
contains this value. As a result, the response contains the entity, the service’s confidence
and the recognized variables [124].

5.2 Natural language understanding

In the section 5.1, the speech recognition part of a VUI was described. The output is usually
a set of possible words. Whenever a sentence is recognized, the speech recognition tries
to recognize all words contained in this sentence. To create a higher accuracy, techniques
of NLU are used. Sometimes, the two modules speech recognition and NLU are merged
together and provided as a single module.

NLU describes the module responsible for analyzing the words that were understood
by the speech recognition system. It tries to understand, what the user said. The NLU sys-
tem is the front end to the DM, which is described in section 5.3. Most systems start with
putting the words provided by the speech recognition into a legitimate word sequence.
Therefore, probabilistic models based on the language are used. Additionally, each lan-
guage provides a set of rules that describe the grammar of the language. These sets can
also be used to verify the consistency of the phrase, especially if the language is known.
In the rare case that the system does not know, which language the user speaks, this pro-
cess is obviously more difficult. The step of applying the grammar rules is often denoted
as semantic parsing. A third part of the understanding process is the dialog decoder. It
collects information about the previous parts of the dialog and uses this information to
figure out the most likely version of the recognition [13]. Adding information that is also
available can increase the recognition rate of this step enormously. For example, McGraw
et al. suggest to use the contacts of an user’s phone book. Names are very hard to recog-
nize, but it is very likely that the user mentions names that is already known. A list of all
contacts can therefore help to figure out, what the user meant [73].

As mentioned earlier, NLU systems often use probabilistic models to figure out what the
user said. The most commonly used model are N-Grams. An N-Gram mode, estimates
the likelihood of a sequence of words of the length N by computing the conditional
probability of observing the Nth word given the previous N-1 words. Unigrams estimate
the likelihood of atomic words. Similar, bigrams estimate the likelihood of pairs of words
and trigrams estimate triplets of words. This can be used for any length of words. N-
Grams are trained by large corpora of texts, such as collections of newspaper articles [61]
[49]. Google used its collection of books to create a very large set of N-Grams. They can

56

5.3 Dialog Management

be viewed using the Google Books N-Gram viewer [39].
Unfortunately, N-Grams cannot always be used. They work very well for the English

language, but each language has its own difficulties. Grouping languages helps. If lan-
guages are similar to each other (the same family of languages), then the same systems
can be used. This is the reason why earlier systems only supported languages like En-
glish, German, French, etc. As Nouza et al. are pointing out, N-Grams cannot be used for
Slavic languages. The reason for this is their lexicons. They are up to ten times larger than
for the English language, due to the more complex grammar of the language. Therefore,
more text is needed, which is barely available. In addition, the free word order makes it
harder to understand the sequences. However, the techniques can still be used, but the
confidence is significantly lower [86].

The output of most NLU systems are N-best lists. Each list entry contains a possible
string that was understood. Additionally, most systems provide a value that describes the
level of confidence. This value is calculated by the system and describes, how likely it is
that the string correlated with it was what the user actually said. This list is the input for
the DM, which is described in the next section.

5.3 Dialog Management

After the input was converted from audio into text, the DM starts its work. The DM is
the heart of a VUI, because it decides how the dialog goes on. Therefore, it analyzes what
was said and maps it to a certain use case. Then, it decides how the dialog should go on.
This decision is based on the current phrase, but also on all the information available from
previous dialogs. As a result, the DM must hold and manage all the information that the
application has about the user and the interaction.

In general, there are two challenges. First, the DM has to figure out, which action should
currently be done. Therefore, the text must be mapped to the available actions. Second,
the manager must make sure that all needed information is available. If this is not the
case, it has to ask the user for the missing information. This information can be a single
term. An example for a single term could be Set the temperature to 75 degrees. The DM can
figure out that the user wants to set the temperature. There is only a single additional
value needed: the temperature. Since this value is already given, the manager can start
the action. However, actions can require much more information and therefore be more
complex. An example for a complex action could be booking a flight. The user typically
does not provide all necessary information in a single utterance. Instead, the user would
most likely say something like I want to book a flight from Washington DC to Frankfurt. The
DM can now already figure out, which action should be done. In addition, two locations
are given: Washington DC as the departure location and Frankfurt as the destination. To
book a flight, there is a lot of more information necessary. For example, an application
would need the desired date, payment information, passenger names and more. Some of
this information can might be already available in the system. Depending on this status,
the DM has to plan the next output of the system. It controls the dialog flow from the VUI
perspective.

From a design perspective, it is better to let the user try to use her / his own words to
describe the action instead of trying to teach users the exact wording. Therefore, the DM
must be able to understand many different phrases and map them to the possible actions
[91].

To figure out, which action should be taken, there are two general strategies: keyword
spotting and full sentence spotting. The first strategy, keyword spotting, is the most com-
mon used strategy. It looks for keywords in the result of the speech recognition respec-

57

5 Technological design

tively NLU module and interprets them. In contrast, full sentence spotting tries to inter-
pret full sentences. It is more complicated and less flexible. However, it can be used to get
more information out of the input phrases [13].

Furthermore, this section gives an overview about different strategies of DMs. These
will be described in the following subsections. These strategies can be used separated from
each, but mixtures are also possible. Whatever strategy is best, depends on the particular
use case.

5.3.1 Finite state based

One of the simplest dialog managers is the finite state based dialog manager. It controls the
dialog flow through a predefined set of states, which are connected. An example for such
a control flow can is show in figure 5.3. This figure is used for a phone based customer
control system. The states are connected. There are options to repeat the question for a
state or the system can go on to another state. However, going on to another state is only
possible if the necessary information was provided. Forward movements are possible as
well. In this case, a state can also lead to transfer the customer to a service representative,
which is here indicated as transfer [122].

Figure 5.3: Simple example of a finite state based dialog manager [122]

This type of dialog manager always follows predefined states. Transitions may refer to
different paths. Because all paths are predefined, this type is good for well-defined and
structured tasks. The structure must be present during development time. However, finite
state based dialog managers are not very flexible and inhibit the user’s initiative [13].

5.3.2 Frame based

If the information needed can be stored in a form, frame based dialog managers can
be used. They act as slot filling applications that try to fill all available slots with the
information necessary to perform a given task. It can store information from previous
tasks and ask for the information needed [13].

Kim et al. used this system and extended it to create a more useful DM. They used a
frame based state representation to keep the complexity of the belief low. Furthermore,
they used dialog examples to train the system. If the user’s intention was figured out,
the goal can be represented as a frame. This frame is in the beginning usually empty
or only sparsely filled. Because there exist a large number of potential options to fill
the empty frame sets, these options were grouped by Kim et al. Then, only groups of
equivalent states are possible. Figure 5.4, shows, how such a frame can look like. The
task given in this example is to get the weather forecast for a certain date. Therefore, three
distinct pieces of information are necessary in this system: the time, the requested weather
type (e.g. temperature, humidity) and the location. As can be seen in figure 5.4, the left
example shows an incomplete frame. The location is missing here. The DM therefore
needs to recognize, that the action is currently not possible and ask the user to provide

58

5.3 Dialog Management

Figure 5.4: A frame based information representation [63]

the necessary information. In contrast, the examples given in the right of figure 5.4 show
complete frames that can be used to perform the action [63].

5.3.3 Agent based

The main purpose of a DM is to maintain the conversational context and control the
dialog. Today, there are many personal assistant existing which help user with simple,
constrained tasks. Maintaining them requires significant effort. Additionally, they often
cannot provide the desired level of sophistication. However, if the domain becomes more
complex, the DM can act as an agent. The agent can do the reasoning and delegate special
tasks to specialized assistants. In other words, it acts as a single point of contact for a set
of assistants. In addition, it manages the state of the application and the dialog. This is
especially useful if the application has to handle more natural dialogs, as their domains are
more complex. In an agent based DM, the user can easily switch back and forth between
the assistants. In addition, it is possible to change the physical context by using different
devices.

Nguyen and Wobcke create an agent based DM which manages emails [83]. They de-
scribe the architecture of an agent based DM by example. These examples will be used in
the following explanations.

Dialogs are mostly user driven. However, system initiative is necessary to recover errors
and lead the user. The DM decides when to talk. Also, the DM as an agent coordinates
the specialized agents. As a result, the architecture is modular which means that it can be
extended easily. New functions or updates can be installed without much effort. This is
one of the major advantages of the agent based design.

According to Wooldridge and Jennings, an agent should always have at least one in-
formation attitude [119]. Therefore, each supporting assistant must serve a purpose. Rao
and Georgeff additionally define an assistant through three properties: belief, desire and
intention (BDI) [95]. These properties represent the informational, motivational and de-
liberative states of the agent. They should be defined for each assistant and define its
behavior. One example implementing these properties is the Procedural Reasoning Sys-
tem (PRS). It was developed by Georgeff and Lansky and is used in Nguyen and Wobcke’s

59

5 Technological design

email example [89]. It relies basically on a loop that queries events and chooses predefined
plans based on the stored data. The result is then stored as well and the loop starts with
the next query entry.

In the given example, the input events are basically the conversational acts by the user.
Then, the system tries to identify the user’s intention. After that, a task will be performed
using an appropriate assistant. The output is a generated response. The loop starts over
with the next input by the user.

The DM keeps track of the dialog data. Therefore, it identifies the user’s intention and
groups it into a class. This is done to group different utterances and manage them more
easily. Nguyen and Wobcke also simplify the situation by assuming that there is only
one speech act per utterance, even if it is possible that utterances contain more speech
acts. A speech act is the class of the intention including its subjects, objects and other data
that might be helpful. It is easier to identify the intention, if the DM has domain specific
knowledge of the domain. Then, a domain specific dictionary can be created.

The dialog data contains also the dialog history. This is save as a stack of all conver-
sational acts both by the system and the user. In addition, a second stack is held. This
stack is called focus stack and contains all objects mentioned earlier in the conversation.
This can be people’s names, folder names or email items. Key phrases are also possible.
This stack can not only be used to understand the user but also to create context sensitive
responses.

Nguyen and Wobcke’s DM is built out of five different parts that are called after each
other. Firstly, the conversational act determination and domain task classification identi-
fies the task domain. This is necessary, so that the required task plan can be loaded. Then,
in a second step, the intention identification determines the actual task. This may requires
more information than in the current utterance available. Therefore, a connection to dialog
history stack and to the focus stack is necessary. For example, after first saying Show me
my emails from today the system shows the emails from today (or reads them out). If the
presumed answer contains an email from Paul, the user could possibly ask next: Read the
one from Paul. The DM must then refer to the previously mentioned time object (today),
which still has to be stored in the focus stack. Otherwise, it would might be unclear, which
email the user is talking about. After an intention was identified successfully, its data
is also added to the focus stack. The third step then performs the action by calling the
assistants. After they are done, the DM lastly generates a response and outputs it to the
user.

As can be seen from Nguyen and Wobcke’s implementation, an agent based DM adds
an additional layer to a set of existing assistants. As a result, more complex domains can
be covered.

5.3.4 Plan based

Besides predefined, finite state based dialog models, there are also local managed based
approaches. These approaches are defined through the fact that they do not try to pre
determine dialog paths. As a result, they are more flexible. One of these approaches is
the plan based dialog management. It divides a specific task into small goals and plans
and tries to fulfill them. This is done by controlling the dialog interaction. By fulfilling all
small tasks, the bigger overall task can be accomplished. This method especially supports
a good structured way of defining the application state.

Wu et al. suggest a system that stores the data in trees. These trees are called topic trees.
The root of a tree is called topic node and describes the overall goal. Middle nodes label
logical relations and leaf nodes contain the actual information. Such a representation can
be seen in figure 5.5. Here, the Flight information is one of the root nodes and characterizes

60

5.4 Speech synthesis

therefore a particular topic tree. Its middle nodes are connected via logical operators like
AND or OR. Additionally, they are marked as Primary Property (PP), Secondary Property (SP)
or Additional Property (AP). PP nodes store dominant information for this topic, SP nodes
store detailed information about the topic and also need to be discussed with the user.
However, nodes marked with AP store additional information and are therefore optional
for the discussion with the user. Topic trees in this system additionally contain a bit that
indicates if there is information stored. For leaf nodes, this is meant to indicate whether
there is information in this leaf node or not. For middle nodes, this is done recursively to
all leaf nodes. This simplifies the checking for nodes that still have to be discussed.

Figure 5.5: The information representation in a plan based DM [120]

Also, each node has response generation function attached. This function can generate
text depending on the nodes information. This text can then be displayed or read out.

After such a tree was build, the system suggested by Wu et al. starts the reasoning
engine. It traverses all nodes through all trees and finds similar information. If this is the
case, these nodes will also be filled so that the system does not have to ask the same ques-
tion for a different topic in the future. This step can also overwrite existing information.
If this is the case, the system forgets old data. The reasoning also looks for action items
that can be performed whenever all data is known. Then, the corresponding action will
be performed [120].

As can be seen from Wu et al. suggested system, this concept suggest a good way to
perform more complex tasks that use different domains. Its data storage system is very
efficient and structured. It can easily be connected to an agent based DM.

5.4 Speech synthesis

After the DM has chosen how the dialog should go on, the speech synthesis module is
responsible for turning the outputted text into audio. This is the exact opposite of the
speech recognition module described in section 5.1. This section describes first general
methodologies how speech can be synthesized. After that, the role of intonation will be
described. This is a very important part of the output, because it can transmit information
in addition to only the meaning of the words.

5.4.1 Methodology

Today’s speech synthesis systems are either based on the concatenation of acoustical
units such as syllables or on HMMs. Earlier systems were almost always based on the
acoustic unit concatenation principle. However, using this technology makes it very hard
to vary the voice of the outputted system. To vary the speaking style, the emotions and

61

5 Technological design

other parameters of a voice, this system requires a huge database of predefined syllables.
In contrast, the voice can be adjusted more easily using HMMs, which are described in
section 5.1.1. Through the usage of HMMs for speech synthesis, it is possible to influence
the voices pitch, spectrum, and pace. Therefore, the same HMM can be used. Only the
parameters need to be adjusted. This can also be used to personalize the voice. Especially
if avatars (see section 3.3) are used, this can be useful to separate the characters [13].

Tokuda et al. first suggested to use HMMs for speech recognition. They used the Festival
framework and adjusted it to the English language (it was first designed for Japanese)
and added their HMM functionalities [24]. Their engine is very small, so it can be used
on small devices such as mobile phones as well (less than 1MB).

Their system is divided into two parts: the training part and the synthesis part. The
training part extracts the spectrum and the excitation parameters from a database that
contains training data audio. Using this extracted data, the HMMs are trained. The spec-
trum is stored using the mel-sepstral analysis technique, which enables the software to
re-synthesize the data directly using the Mel Log Spectrum Approximation (MLSA) fil-
ter (both techniques are explained in [31]). Additionally, the duration of the samples is
analyzed so that the system learns how to vary the pace of the output. Furthermore, con-
textual factors such as the stress relation or location factors are stored as well. Tokuda et
al. use decision trees to store such information.

The second part of the system is the synthesis part. As an input, it gets an arbitrary
text that should turned into audio. Therefore, it concatenates context dependent HMMs
according to the text that should be synthesized. First, it turns the text into a label sequence.
This label sequence is then turned into a speech waveform using the MLSA filter. It should
be noticed that the system has the ability to vary speech parameters so that the output
sounds realistic [110].

Today’s systems can create audio files that are easily customizable by varying a few
parameters. Using HMMs, a small engine can be used to generate different voices without
having a large database of samples.

5.4.2 Intonation

Human conversation is more than just words and sentences. It carries additional infor-
mation which is not written down. This is mainly based on different intonations. It is
important, that the speech synthesis module creates a correct intonation. First, this is im-
portant because it helps to reduce the cognitive load for a user. Section 4.3.5 describes,
how the intonation helps to reduce the cognitive load. Second, the intonation can also
change the meaning of a whole expression. As can be seen in table 5.5, the sentence I
should go will be understood differently by the user depending on the intonation.

Table 5.5: The meaning of a sentence can change depending on its intonation [17]

Prosody Meaning

I should gò. Falling tone on stressed “go” [Neutral]
I should gó? Rising tone on “go” Is that your advice?
Ì should go. Falling tone on “I” Not you!
I shòuld go. Falling tone on “should” And I defy to deny it!
I shôuld go. Rising-falling tone on “should” But I don’t think I will.

As can be seen in table 5.5, the meaning of the expression can change drastically when-

62

5.5 Summary

ever the intonation changes. Especially when requesting more data from the user, which is
usually done by asking questions, the intonation is the only way to mark the expression as
a question. In written output on graphical user interfaces, symbols such as question marks
or explanation marks can be used. Obviously, these need to be translated by the speech
synthesis engine into the correct intonation. This is the first and easier step, because those
symbols can be added by the DM. It should know what should be expressed with the
current utterance. The second problem is more complicated. In case there are no symbols
indicating how the intonation needs to be, additional meta information is necessary. In
a few cases this information can be inferred from the sentence structure or the context.
However, in most cases, the intonation needs to be influenced manually. By today, this is
still one of the major problems of speech synthesis.

The speech synthesis module also needs to add pauses between sentences or when
commas occur. This gives the user more time, to think and understand the sentence out-
putted by the system. Especially for long phrases the addition of pauses is essential. In
contrast, some symbols do not need to be read out. One popular example would be a
colon between the hours and minutes when reading out a time.

5.5 Summary

This section gave an overview over the technical background of a VUI. The main compo-
nents are described. First, there is the speech recognition, which is today heavily based on
HMMs. Additionally, various popular service providers for speech recognition are com-
pared. This comparison is needed because the implementation part of this thesis requires
a speech recognition module. The comparison includes the speech plugins of Android
respectively iOS, Googles REST API and Microsoft’s Bing Speech API. In addition, a new,
upcoming service wit.ai is included in the comparison as well. The second important mod-
ule of a VUI is NLU. This section described its purpose and the main concepts of NLU,
which are today mostly probabilistic models such as N-Grams. The heart of a VUI is the
third module, the dialog management. There are multiple strategies used by DMs. These
strategies, namely finite state based DMs, frame based DMs, agent based DMs and plan
based DMs are described as well. Often, these strategies are used as a mixture of more
than one. They can be used together to compensate others weaknesses. Finally, this sec-
tions described speech synthesis modules and pointed out the importance of intonation
in human speech.

63

6 Implementation

This thesis describes the theoretical background of speech recognition. In addition, it also
describes the development of an application using speech recognition. This application
is a project of htw Saar. It was originally developed by a group of Master students. The
development stopped right at the time, when the work on this thesis started. In conclusion,
the work of this thesis extends the existing functionalities.

The application can be used to experience interactive fiction on a mobile device. During
first development phases, the application was called MTGA (this name can still be seen in
the project). With development going on, the name changed to TaleTime. This name will
be used in further writing to reference the application which is developed in this thesis.

Starting with the idea that stories are used for thousands of years, the project of htw
Saar had the idea to go new ways with interactive fiction. Classical stories are told in
books or movies. They are usually straight forward. New technologies offer possibilities
to encourage the user to interfere into the storyline. This type of storytelling is called
interactive fiction. There are already a few examples. Some of them are available as books,
as computer games or mobile applications. Additionally, tools to create interactive sto-
ries are also already available. The goal of the project was, to explore new ways of how
interactive stories can be consumed. It also included the development of a prototype [79].

This thesis has the goal to extend the existing prototype so it can be controlled by the
user’s voice. Details about what exactly is required, can be found in section 6.2. During
the development of this thesis, a group of Bachelor students is working on the project as
well. They work on the same basis, but aim to extend TaleTime with completely different
and mostly independent functionalities. This group reviewed the existing prototype and
decided to port it to the new, modern and recent Angular platform. Unfortunately, this
requires to completely rewrite most of the code. For this reason, some work required to
fulfill this thesis requirements consists in rewriting existing features. Mostly, this is the
case, because some features are necessary to develop and validate the speech recognition.
These features can therefore not be developed in a parallel process by the Bachelor group.
Although some of these features could easily be mocked, the actual development was
sometimes easier.

The following section describes the basis, which this thesis depends on. This is fol-
lowed by a definition of requirements and details about the development process and the
implementation itself.

6.1 Existing prototype

Due to great work of a group of students of htw Saar, there is already an existing pro-
totype. The project includes the application itself and also a generator, which is used to
produce an XML file that contains the stories. This generator uses the Hypertext Markup
Language (HTML) as input and produces an XML file that is consumed by the applica-
tion. Stories are written using Twine [112]. It is an open source tool to create nonlinear,
interactive stories. Twine publishes directly to HTML. This HTML is then used as input
for the generator. The stories are not written by the project team. For this reason, htw Saar
cooperates with Saarland’s university for art and design. Students of this university are

65

6 Implementation

also part of this project. They participate by writing stories and therefore generating input
for the application.

The prototype itself exists only as an Android application. It offers the following func-
tionalities:

• Story management The prototype gives an overview about the available stories.
This overview is shown as a list. Each story has a picture which is shown as well. A
screenshot of how the actual application looks like can be seen in figure 6.1a. This
list acts as entry point for the prototype and gives the user the choice to select a story
which can then be played. The story management also displays meta data about
the story itself. This meta data contains the author, available languages and a short
description.

• Voice selection There are different voices available. Technically spoken, these voices
are different audio files. The prototype offers a dialog to select one of these voices.
As a result, the user can pick her / his preferred voice. Figure 6.1b shows, how this
dialog looks like in the application.

• Player The player is the main part of the application. It reads out a chapter of the
story. As can be seen in figure 6.1c, there are buttons to control the audio. Play, pause
and stop are available. In figure 6.1c, it can also be seen that there are two different
possibilities of how to go on in the story. This is the interactive part. The user can
control the storyline by choosing one of the available options. Sometimes, the story
is linear and only offers one choice to go on. If this happens, the user has to tap a
button to go on. This situation can be seen in figure 6.1d.

• User management Another core idea is, to use the application with other people, for
example the family. For this reason, the prototype already supports multiple users
and a simple user management. Users can be created and deleted. For each user, the
progress on each story is saved individually.

• Settings There are a few settings the user can use to customize the application. First,
the application supports multiple languages. Currently, only English and German
are supported. Second, the user can change the font size. This is useful, because
children or disabled people may need a larger font. Lastly, the user can choose to go
through stories using the interactive mode. If it is disabled, the application simply
picks the first choice and goes on. In this case, the user experiences a linear story.

The audio files used to output the stories are available within the story. This means, that
the packaged installation file contains all necessary audio files (in this case MP3). Because
of this reason, the application package is quite large. In case of Android, which requires
an Android Application Package (APK) file to install an application, the resulting package
measures about 115MB.

As mentioned earlier, there are multiple audio files for the same story. These files contain
recorded audio of professional speakers, who are trained to read stories out. As a fallback,
there is always one audio file generated with a TTS software. It is not generated by the
application itself. Instead, the files are pre-generated and also part of the application
package.

The application is also prepared to support stories which are available in multiple
languages. Tags to indicate the languages available are already available. However, the
application itself does not support any selection of a language for the story yet. In contrast,
the UI language can be changed.

66

6.1 Existing prototype

(a) The story overview (b) Dialog to select voice

(c) The player with two options (d) The player with only a single answer

Figure 6.1: Screenshots from the existing prototype

67

6 Implementation

6.1.1 Used technologies

The existing prototype is based on the Ionic framework [54]. Ionic is a free and open source
software development kit (SDK) for native and progressive web applications. The existing
prototype was built using Ionic 1. It supports the development of mobile applications for
many operating systems. The development itself is done using web technologies. In fact,
an application is developed using HTML, Cascading Style Sheets (CSS) and JavaScript.
Ionic 1 requires AngularJS (version 1) for development [57].

In order to run, Ionic requires Cordova. Apache Cordova is the underlying framework.
It wraps the applications written with web technologies for each platform. Therefore,
it offers a unified API, which is then matched on the devices platform API. Using this
technology, the web application can access the devices capabilities such as sensors, data,
network status and other functions provided by the operating system [19].

The prototype was built with the following library versions:

• Ionic App Lib: 2.1.2

• Ionic CLI: 2.1.4

• NodeJS: 6.9.1

• AngularJS: 1.5.3

• Cordova: 6.4.0

• Cordova CLI: 6.4.0

By 25th of January, 2017, Ionic 2 was released [70]. The new version is now based on the
new version of Angular, which was released a few months earlier [65]. The Angular team
also announced a new pattern of versioning. As a result, major releases will occur twice
a year. For this reason, the framework is always referred as Angular in this thesis. If it is
important to know the major version, the version is explicitly mentioned. Starting with
Ionic 2 and Angular 2, it is recommended to use TypeScript for development (instead of
JavaScript). Also, the required Angular framework was completely restructured. Existing
code can be run in parallel, but it cannot easily be upgraded to the new version of Angular.

Due to this reason and the fact, that another group of students from htw Saar continues
the work on the application, this thesis is not based on this prototype from a technical
point of view. However, the design, the requirements definition and the ideas described
in section 6.2 are based on this prototype. During the work on this thesis, the earlier
mentioned group of bachelor students from htw Saar works on porting the prototype
to the new version of Ionic and Angular. All development tasks, which are part of this
thesis, are therefore based on the work of this group. Technical details about the current
development will be given in section 6.4.

6.1.2 Open tasks

As mentioned in the previous section, the application is currently only a prototype. Also,
it was mentioned, that another group of students currently works on this project. This
section gives an overview about weaknesses of the prototype and functionalities that
are not yet implemented. These ideas are mentioned in this thesis, because the student
group of htw Saar works on these tasks in parallel to the work of this thesis. The resulting
application will contain both work from this thesis and the project group.

The following ideas are not implemented in the existing prototype yet and will be
covered by either this thesis or the project group:

68

6.2 Requirements definition

• Port to current Ionic version

As mentioned in the previous chapter, one of the major tasks of the project group
is to port all existing functionalities to the current, modern version of Ionic and
Angular. By the time of this writing, the goal is to base the development on Ionic
3.7.0 and Angular 4.1.0.

• Redesign of GUI

A useful GUI is very important. The existing prototype did not focus on a user inter-
face, which is why it’s UI is only built upon the bare minimum. An important task
to make the application more usable is therefore to redesign the whole application.
A new style will be implemented as well as a new layout.

• Story data

Currently, the audio files are part of the application package. As a result, they cannot
be changed. This means, stories cannot be deleted and new stories cannot be added.
This is one of the most important tasks which need to be worked on. The idea is
to store the data using the file system of the device. However, this also requires a
source, where stories can be downloaded. The idea includes creating a marketplace,
where users can purchase new stories.

• Link to Google Account

In the future, the application should be able, to connect a local account to a Google
account. Using Google Drive, the user data can be stored online. As a result, the
user’s data can easily be synchronized on multiple devices. This is especially useful
for the usage with multiple users.

• Different node types

Interactive fiction enables the user to influence the storyline. It is possible, to extend
the story by adding conditions to the storyline. As a result, the story becomes more
dependent on the users choices. An example could be, that the user must have made
the choice earlier in order to go on with a certain node. A simple example for this
could be a story, where the user first can decide whether to pick up a key or not. In a
later chapter, this key could possibly be required to open a door. If it is not, the user
cannot pick this storyline.

• Speech recognition

This is the feature developed in this thesis. At the moment, the user needs to pick an
answer by tapping a button on the screen. This represents a break in media, because
the story is read out. To improve the user experience, the user should be able to
input the data in the same way it is presented: via audio. Therefore, a useful feature
is to create an interface to control the application with the voice.

Except the speech recognition tasks, all other tasks will mainly be accomplished by
the bachelors group. However, since most of the features are necessary to start with the
development of speech recognition, some supporting work is also done during this thesis.

6.2 Requirements definition

This section describes the requirements that should be covered by the development work
of this thesis. The requirements all regard the speech recognition. This technology is

69

6 Implementation

mainly used to control the player, which is the core functionality of TaleTime. The new
design of the player can be seen in figure 6.2.

Figure 6.2: Mockup of the new player

As can be seen in figure 6.2, there are buttons to toggle play and pause, picking an
answer and going back to the previous chapter. These are also the main functionalities
that need to be covered by the speech recognition. The following list gives an overview
about which functionalities will be covered by this thesis:

• Naming answer

The user should be able to pick an answer be simply reading it out or repeating
one of the options. This is the simplest way of picking an answer. It is similar to a
command pattern, because the user does not use her / his own words to describe
which answer should be taken. All possible answers can be seen on the screen and
they are additionally read out after each chapter was read out.

• Describing answer

Instead of reading the answer out, the user should be able to describe the answer
using his / her own words. The system must then match the correct answer. Obvi-
ously, there are limitations. But if similar words are used, the system must match
the correct answer. Examples include “I want to him to kick” instead of “kick” and
also possibly instead of “shoot”. Also, this matching depends on how similar the
answers are to each other. If the nodes are more distinct from each other, than the
matching can be done more accurate.

70

6.3 Definition of grammar

• Picking index

Another way to pick an answer is to define it by its index. For example, the user
could say: “I want to choose the first answer”. This should also be recognized by
the system and matched to the correct answer. This pattern also includes phrases
like “the last” or “number three”.

• Controlling the flow if only one answer is available

Sometimes, the story is linear. Then, the user basically only has the choice to go on.
The system should still confirm this by asking “Do you want to continue?” or a
similar dialog.

• Picking one for the user

In case the user does not care on how to go on, or expresses that she / he does not
want to make a choice, the system should first provide some additional explanation.
If the user still does not choose, then the system should go on with a random answer.
It should be noticed, that this way is different than not saying anything. This case
must also be handled, but in a different manner. This requirement only covers the
user explicitly saying that she / he does not want to make a choice.

• Repeat current chapter

The user should also be able to repeat the current chapter by saying “Repeat!”,
“Play this chapter again” or something similar. This can then be matched by the
application and result in the correlating action.

• Go back to previous chapter

Instead of tapping the button, the user should also be able to go back to the previous
chapter by using her / his voice. For example, the user could say: “I want to listen
to the previous chapter again” or “Go back”. If this is the case, the system needs to
load the previous chapter.

The VUI also must provide additional help, if the user was not understood or if the user
did not say anything. This will be done in different steps. First, the possible answer will
be read out again. Second, if the user still did not say something that matches, the VUI
tries to assist by telling the user that she / he should pick an answer and then reading the
answers out again. The flow of this way through the VUI can be seen in the earlier used
figure 4.2.

In general, the VUI needs to try to help user whenever something was misunderstood.
To prevent going into an endless loop of repeating the answers, which could happen if
the user for instance simply walks away, the VUI will only try to help the user three times.
After that, it will ask the user to use one of the buttons instead of the VUI.

In general, the wording of the VUI will be kept simple. This is because of two reasons.
First, the target group of TaleTime are young children. Therefore, the language should
be simple, so each child can understand the VUI easily. Second, users also have a screen
in front of them. The screen distracts them. As a result, the cognitive load increases. To
prevent confusing the users, a simple language is required.

6.3 Definition of grammar

The grammar of TaleTime VUI is defined in a JSON file. For each language, there is another
JSON file. This leads to the advantage that more languages can be added easily. This

71

6 Implementation

JSON file contains both the output produced by the VUI to interact with the user and also
phrases that are used to match the user’s input against. It is obvious that the answers that
are possible for each chapter of a story are not contained in this file. Instead, the algorithm
tries to match what was said to the set of answers define in the story itself.

A snippet of the English JSON file can be seen in listing 6.1. It only shows parts of the
section used for the output of the VUI.

1 ...

2

3 "answers": {

4 "multiple": [

5 {

6 "id": 0,

7 "value": "How do you want the story to continue: "

8 },

9 {

10 "id": 1,

11 "value": "How would you like to continue: "

12 },

13 {

14 "id": 2,

15 "value": "You have the choice: "

16 }

17],

18 "single": [

19 {

20 "id": 0,

21 "value": "Do you want to continue ?"

22 },

23 {

24 "id": 1,

25 "value": "Continue ?"

26 }

27]

28

29 ...

Listing 6.1: Part of output section of English grammar JSON

As can be seen in listing 6.1, a definition of multiple versions is possible. As a result,
the VUI system has different expressions to choose from. For each statement that can be
expressed, there is an entry in the correlating JSON file. Listing 6.1 shows expressions used
for output. This means, whenever the VUI needs to say something, it reads the expressions
out of the JSON file and picks the best matching expression or simply a random one.
Having multiple options helps to let the VUI sound less mechanic. For instance, if the
VUI of TaleTime comes to the step where it needs to read the answers out, it reads the
JSON file. Depending on how many answers are available, there are different expressions.
These are grouped into different arrays within the JSON file. Hence, the VUI uses different
keys depending on how many answers are available to read out of the JSON file.

In case the VUI realizes that there are two possible answers, it uses the key multiple and
gets three different expressions that can be read out. It is then up to the VUI to pick one

72

6.4 Development

of these. The JSON file is designed to only contain interchangeable expressions per array.
Similar, there are expressions that the VUI can use to match the users input against.

These expressions obviously do not contain any data of the answers from the story. This
data is only stored within the story. However, there are several use cases where a general
matching can be done. One of these examples can be seen in listing 6.2.

1 ...

2

3 "enum": [

4 {

5 "id": 0,

6 "value": "first",

7 "index": 1

8 },

9 {

10 "id": 1,

11 "value": "second",

12 "index": 2

13 },

14 {

15 "id": 2,

16 "value": "third",

17 "index": 3

18 }

19

20 ...

Listing 6.2: Part of the input section of English grammar JSON

The data in listing 6.2 is used to find out, if the user was referring to an index. For
example, if the user wants the pick the first number, an expression like “Let’s pick the
first one!” is presumably. The VUI can then compare this statement against words usually
used to express positions and pick the correct answer for the user. Data like this is also
stored in the JSON file.

It not only contains data about enumerations. Use cases like expressing that the user
does not care will also be compared against data in the JSON file. Other use cases include
agreement, negations and control sequences for the general behavior of the application.

The full JSON file can be found in appendix B.
As mentioned earlier, this procedure ensures simple multilanguage support. The only

changes necessary are the usage of other JSON files. TaleTime currently supports English
and German. The JSON files are loaded whenever the user changes the language in the
settings. This ensures that not only the UI language changes, but also the language used
and understood by the VUI.

6.4 Development

This section describes technical details concerning the development of the VUI which is
part of TaleTime. To illustrate this, this section will first describe the technological basics
of the prototype. Second, this section gives an overview of the architecture designed.
This will point out all components used in the VUI and helps to understand, how they

73

6 Implementation

work together. Followed by this, each component is described in more detail. The term
component expresses any part of the software, which can be individually described. Lastly,
open problems that could not be handled during this thesis will be pointed out.

6.4.1 Technological basics

The project is based on Ionic 2, which uses Angular (version 2 or newer). By the time of
this writing, the following versions are used:

• Ionic core: 3.7.0

• Angular: 4.1.0

• Cordova: 6.2.3

• NodeJS: 7.7.3

This list does not contain all packages that are used during this project. For example,
Angular itself consists out of many modules. This makes it easier to only include the
necessary parts of Angular into the application. However, a complete overview of all
packages used, including their versions, can be found in appendix A.

Ionic scaffolds the structure for an application. Generally spoken, the main compo-
nents are pages. Each page represents a screen. The content of the page is described
using HTML, the appearance can be changed using Syntactically Awesome Style Sheets
(SASS) [99]. Internally, Ionic uses an Angular component to represent a page. Angular
components consist out of a template (HTML), stylings (CSS) and application code. It is
recommended to write the application code in TypeScript. However, JavaScript and Dart
are also supported by Angular. This project uses TypeScript. The application code should
only contain code that is necessary for this exact component.

Since Angular is a framework whose original purpose is to develop single page applica-
tions (SPA), components can also be used on a web page. However, this thesis concentrates
on mobile development with Ionic. Ionic uses Angular and abstracts it for its own pur-
poses. Hence, an Angular component and an Ionic page are used interchangeable in this
thesis.

There is a strong connection between the application logic of a page and the HTML
template. It is possible to use values of variables in the application code and output
them directly into the template. Angular takes care of keeping them updated. Also, there
are structural directives that change the document object model (DOM), depending on
different states of the application. Additionally, there are more options to change the ap-
pearance of the application depending on the state. Angular offers more directives for
this. For example, the color of a button can be changed depending on the content of a vari-
able. Angular also takes care of keeping this updated. Because this thesis is not about the
basics of Angular, only the core concepts will be explained whenever necessary. A good
overview of Angular and its functionalities can be found in the official documentation [4].

Ionic also brings additional functionalities needed on a mobile device. It is easily pos-
sible to stack pages and go to other pages, for example when buttons are tapped. This
helps constructing the UI. The stack can also be used to navigate back to last visited page.
Pages do not contain application logic.

More complex actions or actions that are used in multiple pages can be extracted into
providers. The Angular documentation describes providers as services, but Ionic defines
them as providers. Therefore, they are called providers in this writing. A provider can

74

6.4 Development

be injected using Angular’s dependency injection mechanism [3]. As a result, application
logic can easily be shared across different components.

Ionic also offers to add more complex functionalities to an application. To keep the
application code small, these are optional. Ionic calls these additional functionalities Ionic
Native. This thesis makes use of two important Ionic Native modules: Speech Recognition
[55] and Text To Speech [56]. These modules are used for input and output of the VUI.

6.4.2 Architecture

The architecture of the VUI, which is developed for TaleTime, consists out of four impor-
tant providers:

• LanguageFileProvider This provider encapsulates access to the JSON files, that con-
tain the grammar. Whenever the VUI requests texts, this provider is used.

• TTSTextProvider Using the LanguageFileProvider, this provider generates texts
that can be used by the VUI to output messages.

• TTSProvider Is used from the Ionic Native plugin and directly called to synthesize
text, whenever written text needs to be read out by the VUI.

• SpeechRecognitionProvider This provider performs the speech recognition. It is im-
ported from the Ionic Native Speech Recognition plugin. When called, this provider
returns a list of phrases that were understood.

• AnswerMatchingProvider This provider matches the results of the speech recog-
nition to the answers possible to go on in the story. It contains the logic to match
phrases to the answers that are possible or, if no answers matches, to return an error.

These providers are described in more detail in section 6.4.3. Figure 6.3 illustrates,
how the different providers work together. The VUI is controlled by the player page. Its
application logic calls the providers whenever needed. Figure 6.3 demonstrates how a
normal procedure works. After the player finished reading out a chapter, it requests a text
wrapper to read the answers out. Depending on the situation, different wrappers may
be called. In this case, the player separates between situations, where only one answer is
available and situations, where more than one answer is possible. After the wrapper text
was received, the player puts the wrapper and the answers together and creates a text that
can then be outputted by the TTSProvider. After the TTSProvider outputted the answers,
the speech recognition is started. It waits for the user to say something and returns what
was understood. This result is then matched by the AnswerMatchingProvider. As a result,
this provider returns either the answer which was matched or an error. If an answer was
matched, the player loads the next chapter and starts reading it out, followed by the same
process described above. If the AnswerMatchingProvider did not match an answer, the
player tries to provide help. This procedure is described in more detail in the next section
(6.4.3).

During development, one major architectural problem occurred. Usually, the applica-
tion uses TTS to output the answers that are possible. However, sometimes the audio files
do not only read the chapter out, but also the answers. Unfortunately, there is currently
no possibility to find that out. As a workaround, each story needs to provide this informa-
tion. In a future version, it would make sense to also have recordings of the answers. This
would also give designers the possibility to provide further explanations instead of only
the answer text itself.

75

6 Implementation

Figure 6.3: Overview of the VUI part of TaleTime

6.4.3 Components

Section 6.4.2 gave an overview about the architecture and how all components work
together. This section describes each component in more technical detail.

Player The player is in full control of the VUI. It has access to the StoryProvider, which
contains all the data of the story itself (except the audio), an AudioProvider to play the
provided audio files and all providers mentioned above.

To describe, how the player works, the reader must have an overview about the most
important methods contained in the player. The following list gives an overview about
them and shortly describes their function. However, this list only describes the signature
of each method. In case further details matter, they are given later. Also, this list represents
a subset of the methods available, because only methods are mentioned that are important
for the VUI.

• play()

This method starts playing the audio track of the current chapter. If there is no audio
track for this story, TTS is used as a fallback. After TTS or the AudioProvider is
done reading out the chapter’s text, readAnswersOut(counter) is called. The counter
of this function represents, how often the speech recognition was started. Because
the player just finished reading the chapter out, this counter is set to zero.

The player requests the path to an audio file from the StoryProvider. If reading
the audio file does not work, for example because the file is not available anymore,
switchToTTS() is called.

• pause()

No matter if TTS or an audio track is used for output, this method stops the out-
put. Currently, there is no difference between pause and stop. Calling this function
always stops the output.

76

6.4 Development

• switchToTTS()

In case the player needs to switch to TTS, this method sets the necessary conditions
and starts the output again with TTS. This method is mainly used when skipping to
TTS as a fallback.

• readAnswersOut(counter: number)

First, this method requests the answer text from the TTSTextProvider. This provider
also puts the answers in the wrapper, which it reads out of the grammar file. Then,
it triggers the TTSProvider to read this text out. The counter, which is given as
parameter, helps keeping track of how often the speech recognition was started.
In the beginning, this counter is zero. If the method was called and there was no
parameter provided, it is also assumed as zero. After the TTSProvider finished its
output, startSpeechRecognition(counter) is called.

• startSpeechRecognition(counter: number)

To start the speech recognition, this methods first sets up the environment for the
speech recognition. This includes setting the language. Then, it triggers the recog-
nition. The speech recognition either returns an array of matches or an error. If
there were matches, the AnswerMatchingService is used to try and find a match-
ing answer. In case, no answer matches or there was an error, repeatSpeechRecog-
nition(counter) is called. Again, the counter is used to keep track of how often the
speech recognition was called.

• repeatSpeechRecogniton(counter: number)

In case the speech recognition did result in an error or the result could not be
matched to one of the answers, this method is called. The behavior depends on
the counter, which represents how often the speech recognition was used. Currently,
the behavior is as follows, depending of the state of the counter:

– 0: Speech recognition is simply restarted.

– 1: Answers will be read out again and speech recognition is restarted.

– 2: An output is generated to tell the user that she / he should use the GUI
instead of the VUI. The VUI then stops to try to use speech recognition until
the user selected an answer. In addition, the GUI highlights the answer buttons
to indicate that the user should use them to pick an answer.

Those values can be adjusted. It is important, that the VUI keeps track of how often
the speech recognition tried to understand the user. This prevents the VUI from
ending in an endless loop asking the user over and over again. Additionally, the
output can be adjusted this way.

The description of the methods above contains also the control flow, which the VUI
goes through. Figure 6.4 illustrates this control sequence and the calls of each method in
a clearer way. The VUI starts its work, when the player is done reading a chapter out.

The method readAnswersOut(int) is passed as a callback function to either the TTSProvider’s
speak function or the AudioProvider’s play function. readAnswersOut(int) creates a text
and reads it out. Then, it calls startSpeechRecognition(int). The result of this method can
be successful or not. If it is not, an error is returned. In this case, repeatSpeechRecogni-
tion(int) is called. If the result of startSpeechRecognition(int) was successful, the player tries
to match the result to one of the possible answers. This is done by calling the Answer-
MatchingProvider’s match(Answers[]) method. If it’s result is successful, the player loads

77

6 Implementation

the next chapter by calling the loadNodeFromAnswer(int) method. If there was no match
which means that the AnswerMatchingProvider either returned null or an error, then
repeatSpeechRecognition(int) is also called.

Depending on the parameter passed into repeatSpeechRecognition(int), it’s behavior is
different. After each decision of what to do next, it increments the counter. If the counter
is zero, it starts the speech recognition again, so that the user has the option to repeat
what was said earlier. In case the counter is one, which means the speech recognition
tried to recognize what the user was saying twice, the answers are read out again. This is
done, because the user apparently did not understand or forgot the answers. Reading the
answers out again acts as a help message for the user. It is most likely that the user simply
misunderstood the options at this point. If repeatSpeechRecognition(int) is called again and
the counter is two, it creates a help message which tells the user to skip to the GUI. This
is done, because after the user tried to say her / his decision for three times, it is not very
likely that the VUI will understand the user by the fourth time. Also, it is possible that
the user was not saying anything the whole time. In this case, not stopping at a particular
counter would let the VUI end up in an endless loop and keep telling the user to repeat
her / his decision.

Figure 6.4: Control flow of the VUI and the called methods

The player controls the core functionalities of the VUI. The reason why the player is in
charge of this, is because it also controls the GUI. As a result, it can provide an integrated
UX using both the GUI and the VUI.

78

6.4 Development

TTSTextProvider

The main purpose of this provider is to generate texts that are used by the VUI as output.
Listing 6.3 demonstrates how this provider works. It shows the method used to generate
the text when the VUI is reading the answers out.

1 public createAnswersText(answers: MtgaNextStoryNode []): string{

2 let text: string;

3
4 if (answers.length == 1){

5 // only one possible answer

6 console.log("There 's only one possible answer");

7 let i = this.generateRandomNumber(this.languageFileProvider.

preDefinedTexts.answers.single.length);

8 text = this.languageFileProvider.preDefinedTexts.answers.

single[i]. value;

9 } else {

10 // multiple possible answers

11 console.log("There are multiple possible answers");

12 let i = this.generateRandomNumber(this.languageFileProvider.

preDefinedTexts.answers.single.length);

13 text = this.languageFileProvider.preDefinedTexts.answers.

multiple[i]. value;

14 for (let i=0;i<answers.length;i++){

15 if (i != answers.length -1){

16 text = text + " " + answers[i].value;

17 if (i < answers.length -2){

18 text = text + ",";

19 }

20 } else {

21 let j = this.generateRandomNumber(this.

languageFileProvider.preDefinedTexts.linking.or.length

);

22 text = text + " " + this.languageFileProvider.

preDefinedTexts.linking.or[j]. value + " " + answers[i

]. value + "?";

23 }

24 }

25 }

Listing 6.3: Method to create the answer texts, used as output by the VUI

As can be seen in listing 6.3, the method call provides a parameter. This parameter
contains the possible answers that can be matched. If there is only one answer, the
TTSTextProvider requests a randomly chosen text from the LanguageFileProvider. It al-
ready knows that it has to look into answers.single. If there are multiple answers, the TTS-
TextProvider reads a random text from the LanguageFileProvider. This time, answers.multiple
is used. Then, the string is expanded with the possible answers. It is noticeable, that there
are different words for linking available. Here, a link meaning or is used. These linking
words are also part of the grammar.

LanguageFileProvider

79

6 Implementation

The LanguageFileProvider wraps the access to the JSON files which contain the gram-
mar. When this provider is first instantiated, it loads the default language file (currently
English). It basically only offers two methods.

The method loadLanguageFile(language) reads the JSON file containing the grammar for
the specified language. Then, it holds the read data for further access. The second method
is a getter to access the data. Other components accessing the data therefore must have
knowledge about the structure of the grammar files.

TTSProvider

The TTSProvider, which is part of the Ionic Native module Text To Speech offers two
important methods: speak(string | TTSOptions) and stop().

The speak(string | TTSOptions) method starts the speech output. If only a string is passed
as parameter, it tries to read it out using English. Using an options object, the output can
be customized. If an object is passed, the following options are available:

• text: contains the text, that should be read out.

• language: the language, that should be used for the output. This is especially impor-
tant for the intonation of the output.

• rate: defines a rate between zero and one. The rate describes the pace that the TTS
system uses to speak.

As can be guessed from the name, the stop() method stops the current output.
Both methods return promises. A promise is a return value for asynchronous execution.

Whenever a promise is returned, the application can register tasks that are performed
when the execution was successful. This is done by calling the then() function of a promise
and passing a function as a parameter. If the asynchronous execution of the promise was
successful, the passed function will be called. In case an error occurs, the function passed
to the catch() function of the promise is called.

SpeechRecognitionProvider

Similar to the TTSProvider, the SpeechRecognitionProvider is important from an Ionic
Native module. It offers a set of methods. Only a few of them are used by TaleTime’s VUI.
The following list gives an overview about them:

• startListening(options)

This method starts the speech recognition process. On Android, it stops itself when
the service noticed, that the user has stopped speaking. If iOS is used, there is another
method to stop the recognition manually. Since this thesis only concentrates on the
development of TaleTime for Android, this method is not considered.

Similar to the TTSProviders speak(int) method, this method also returns a promise. If
the recognition was successful, the result returned is an array of strings. The strings
are ordered by their confidence. However, the exact confidence value is not given.

Via the options object that can passed as parameter, a few adjustments for the recog-
nition can be made. These include the language through a language code, the num-
ber of matches, if the module should use a graphical popup when listening, the
caption for this popup and if partial results are allowed.

80

6.4 Development

• requestPermission()

In order to use the speech recognition service, the provider needs to access the
devices microphone. Most operating systems require the user to approve an appli-
cation accessing the microphone. This methods brings up a dialog and asks for the
user’s permission to use the microphone.

• hasPermission()

This method checks if the user already has given the permission to use the micro-
phone. TaleTime uses this method to make sure, the user does not have to give the
permission more than once.

Internally, this plugin uses Android’s speech recognition API [2].

AnswerMatchingProvider

The AnswerMatchingProvider is the core of the VUI. It matches the results of the speech
recognition to one of the answers that are possible for the user to answer for this chapter.

To do so, this provider offers one important method, which will be explained in the
following text. This function is called match(string[], MtgaNextStoryNode[]). It has two pa-
rameters. The first is the array of strings that contains the result of the speech recognition.
The second parameter is the current node of the story. It holds the information about the
current chapter and the possible answers. The method either returns another node, which
can then be loaded by the player, or null. If null is returned, no match was found.

1 public match(result: string[], answers: MtgaNextStoryNode []):

MtgaNextStoryNode | string | null {

2
3 if (answers.length != 1){

4 // find exact math considering the hierarchy

5 for (let i = 0; i < result.length; i++) {

6 for (let answer of answers) {

7 if (AnswerMatchingProvider.checkContent(answer.value ,

result[i])) {

8 console.log(answer.value + " matched to answer");

9 return answer;

10 }

11 }

12 }

13 } else {

14 // only one answer possible, system asks if user wants to continue

15 // therefore check if user agrees

16 for (let i = 0; i < result.length; i++) {

17 for(let a of this.languageFileProvider.preDefinedTexts.

agree){

18 if (AnswerMatchingProvider.checkContent(a.value , result

[i])) {

19 console.log(a.value + " matched to answer");

20 return answers [0]; // it is only one possible here

21 }

22 }

23 }

24 }

25

81

6 Implementation

26 // nothing found so far, check for numbers

27 for (let i = 0; i < result.length; i++) {

28 for(let e of this.languageFileProvider.preDefinedTexts.enum){

29 if (AnswerMatchingProvider.checkContent(e.value , result[i

])) {

30 return answers[e.index -1]

31 }

32 }

33 }

34
35 // navigate backwards

36 for (let i = 0; i < result.length; i++) {

37 for (let e of this.languageFileProvider.preDefinedTexts.

backwards) {

38 if (AnswerMatchingProvider.checkContent(e.value , result[i

])) {

39 return ANSWER_CHAPTER_BACKWARDS;

40 }

41 }

42 }

43
44 // repeat current chapter

45 for (let i = 0; i < result.length; i++) {

46 for (let e of this.languageFileProvider.preDefinedTexts.

repeatChapter) {

47 if (AnswerMatchingProvider.checkContent(e.value , result[i

])) {

48 return ANSWER_CHAPTER_REPEAT;

49 }

50 }

51 }

52
53 // does not matter

54 for (let i = 0; i < result.length; i++) {

55 for (let e of this.languageFileProvider.preDefinedTexts.

doNotCare) {

56 if (AnswerMatchingProvider.checkContent(e.value , result[i

])) {

57 return answers[AnswerMatchingProvider.

createRandomNumber(answers.length)];

58 }

59 }

60 }

61
62 return null;

63 }

Listing 6.4: The method used for matching

Listing 6.4 shows the algorithm which is used by the provider to match the answers.
This algorithm tries to match the exact wording first. That means, that each possible result
of the speech recognition is compared against the list of possible answers. Therefore, it
considers the order of the results from the speech recognition. If the provider finds a
match, it returns the node. If not, it goes on.

The next attempt to match answers is to compare, if one of the results is contained in
one of the answers. This means, the result could be a substring of one of the answers.

82

6.4 Development

Similar to the first attempt, the provider keeps track of the order and tries to match each
result to one of the answers. Again, if an answer is found, it returns the corresponding
node. If not, it goes on with the next matching strategy.

This strategy tries to read other information. Currently, the providers tries to find out
if the user is talking about a particular index. If the user is talking about a number, then
it checks if the numbers meaning could be the index of the answer. If this is the case, the
provider returns it. The next attempt tries to match the answer to a navigation command.
It is possible, that the user wants to repeat the chapter or navigate backwards. If the answer
still is not matched, there is one more thing that can possibly be matched by the VUI. It
tries to find out, if the user does not care on how to go on. If this is the case, the provider
randomly picks one of the answers. If not, it attempts that it is not possible to match the
result to an answer. It then returns null.

With this strategy, most of the answers can be matched. In fact, during a test with the
whole story, 15 out of 17 tries were matched successfully. There were 15 nodes, the user
tried to answer one question two times. Therefore, there were 17 tries. Overall, this is a
result of 88% during a normal test run.

6.4.4 Open problems

There are currently some problems that are still open and cannot be solved in this thesis.
The following list gives an overview about those problems. Some of them occurred during
development, some during the design phase.

• MP3 files contain answers

As already mentioned earlier, some of the MP3 files, which were professionally
recorded, already contain the answers. This means, that the reader not only read out
the chapter itself, but also the possible answers. The VUI can currently not know, if
the MP3 file contains the answers or not. As a result, it is possible that the answers
are read out twice. First, the reader reads them out when the application plays the
audio file. Then, the VUI reads the answers out for a second time. Fortunately, it is
clear for each reader, if the answers are part of the audio file or not. In other words,
differences do not exist between different files recorded by the same reader.

A workaround used for this thesis is to store the data in the story file. There is now
a marker in the story file for each reader, indicating if the answers are part of the
audio file or not.

Future versions should aim to solve this problem by dividing the audio files. For
each chapter, there should be at least two audio files. The first contains the audio
of the chapter itself. The second contains the audio of the answers. Another option
would be to also provide a single audio file per answer. Most important is, that this
procedure is done consistently.

• High data usage of TTSProvider

Unfortunately, the TTSProvider currently consumes much data. Especially, if whole
texts are read out, this is the case. The previous group working on this project
solved this problem with prerecorded audio files created by the TTS software. This
cannot be done for the answers that are read out by the VUI, because these texts
are dynamically generated. However, if TTS is only used to read the answers out,
the usage is not too high. Also, this can be solved by providing audio files for the
snippets that are contained in the grammar JSON files.

83

6 Implementation

Most of the problems above also contain suggestions to solve them in their description.
However, the solution requires more work than affordable in this thesis. As a result,
solving the problems can be part of future projects working on TaleTime.

6.5 Summary

As shown in the previous sections of this chapter, the development of the VUI for TaleTime
started with the prototype that was already existing. This prototype was responsible for
the tasks that were planned.

However, since the project group, which was also working on this project, decided to
move the project to the current version of the Ionic platform, all of the existing code had
to be rewritten. This lead to an organizational problem, because it would not have made
sense to develop the VUI based on the older platform and also migrate it to the new
version. Instead, this thesis includes support for the migration to the current version of
Ionic or Angular, respectively. All of the tasks regarding the VUI were then based on the
migrated prototype. This is also the code basis, the project group was working with for
any further development.

The development of the VUI is completely done in TypeScript. For input and output,
plugins provided by the Ionic framework were used. The design of the VUI is based on
the theory described in previous chapters. It is designed to be as easy to use as possible,
which particular care of the wording. Because one of the main target groups of TaleTime
is young children, it is important that the wording is easy enough so they can understand
it.

As a fallback, the VUI uses the GUI. Whenever it gets stuck, it stops keep asking the
user for more voice interaction. Instead, it tells the user to use the GUI.

There are still a few open problems described in this section. These problems can be
solved in future projects. They are described in section 6.4.4. Additionally, some of these
descriptions already contain suggestions on how to solve these problems. However, most
of these solutions require more work to be done than possible in this thesis.

84

7 Conclusion

As this thesis has shown, the development of VUIs is a complex process. However, it is
important for today’s IT systems and will gain more importance in the future, as system
will evolve and become more mature. People already started using personal assistants.
Once their more used to the interaction via voice, they will automatically increase the
usage. In addition, more and more devices will be connected to each other. As a result, it
will be possible to control many more devices via voice. This is also possible, if the devices
themselves do not have their own microphones and / or speakers. Through personal
assistants, many more functionalities will be able to use voice as an input.

As a result, the user experience will change. Users are able to use applications more
intuitively with VUIs. They simplify the usage because users do not have to learn how
to interact with complex menus. Furthermore, user can use their own words to describe
the function they want to use. In addition, the hands-free usage of VUIs give them a
big advantage in certain situations such as driving a car. Overall, VUIs increase the user
experience by far.

Especially in combination with other UIs, VUIs can be used in almost every use case.
Such multimodal applications can make sure that the VUI is only available, when it is
actually useful. Multimodal applications help to use the strengths of each UI and avoid
their weaknesses in the same time.

Furthermore, multimodal design helps to lower cognitive load. Particularly when us-
ing VUIs, the cognitive load is naturally higher. Because VUIs read information out, the
information is volatile. Therefore, it is required for the user to keep everything in mind.
VUIs also only support a sequential output. As a result, users have no possibility to see
what an earlier output was. This enormous weakness can be covered by using a screen.
The multimodality helps the user to remember items used beforehand. In addition, VUIs
cannot be used to display some kind of data. Maps and images for example cannot be
displayed using a VUI very well. Instead, screens are more useful. However, in some cases
VUIs are the best choice. The best UI always depends on the data.

All in all, VUIs must be built with a high quality so users accept them. If the recognition
or the matching is implemented poorly, users get annoyed very quickly. To prevent this,
designers need to follow a few rules in their dialog design.

These rules include the structure of dialogs. They should always be clear and straight-
forward. Options need to be pointed out clearly. Disambiguation should kept low. Analo-
gous, question should be clear as well. The usage of rhetoric questions should generally
be avoided. Questions also should be placed at the end of a sentence because users tend to
answer them directly. When placed in the middle of a sentence, the user would interrupt
the output. In general, users remember best what is placed in the end of the output.

Developers can also make use of checksums whenever possible to validate the accuracy
and the VUIs quality. This is all part of the high level dialog design.

In contrast, the process of detailed dialog design takes care of the exact wording. De-
signers make sure, that everything sounds good and that the brands image is kept. Addi-
tionally, it should be made sure that the user can get enough help whenever needed and
that the error handling catches all possible errors.

From a technical perspective, VUIs consist of the speech recognition, NLU, the DM and
the speech synthesis. Speech recognition and speech synthesis heavily rely on HMMs

85

7 Conclusion

today. The DM is the heart of a VUI, because it keeps track of everything that was said
and connects this data to create the dialog from the VUIs perspective.

This thesis includes the implementation of a VUI in an existing application. TaleTime,
the application that is developed in this thesis, is used to explore interactive fiction. Be-
cause the output of this application is audio, it makes sense to use audio for the input as
well. As a result, there is no break between the modalities. The dialogs in this VUI are cre-
ated following the thoughts expressed in this thesis. It allows the user to navigate through
an application completely based on voice. The implementation is based on Ionic and uses
Androids internal speech recognition API. It then matches the answers and returns text
to the output system.

This thesis gave an overview over the development procedures used when developing
VUIs. They are explained using a practical example and can be used in small and larger
projects. Following the guidelines in this thesis helps to create a VUI with the highest
quality possible. For more interested readers, there are many citations that lead to more
detailed sources.

86

Bibliography

[1] Amazon. Alexa Skills Kit Voice Design Best Practices - Amazon Apps & Services De-
veloper Portal. Apr. 13, 2017. U R L: https://developer.amazon.com/public/
solutions/alexa/alexa-skills-kit/docs/alexa-skills-kit-voice-design-

best-practices (visited on 04/13/2017).

[2] Android. SpeechRecognizer | Android Developers. Aug. 12, 2017. U R L: https://
developer.android.com/reference/android/speech/SpeechRecognizer.html

(visited on 08/12/2017).

[3] Angular. Angular - Dependency Injection. Aug. 11, 2017. U R L: https://angular.
io/guide/dependency-injection (visited on 08/12/2017).

[4] Angular. Angular - What is Angular? Aug. 11, 2017. U R L: https://angular.io/
docs (visited on 08/12/2017).

[5] Apple. iOS - CarPlay - Apple. June 6, 2017. U R L: https://www.apple.com/ios/
carplay/ (visited on 06/06/2017).

[6] Apple. iOS - Siri. Apple. June 18, 2017. U R L: http://www.apple.com/ios/siri/
(visited on 06/19/2017).

[7] Peter Bakondy. cordova-plugin-speechrecognition: :microphone: Cordova Plugin for
Speech Recognition. original-date: 2016-09-29T16:23:24Z. Aug. 25, 2017. U R L: https:
//github.com/pbakondy/cordova-plugin-speechrecognition.

[8] Bruce Balentine. „Re-Engineering the Speech Menu.“ In: Human Factors and Voice
Interactive Systems. The Springer International Series in Engineering and Computer
Science. DOI: 10.1007/978-1-4757-2980-1_10. Springer, Boston, MA, 1999, pp. 205–
235. I S B N: 978-1-4757-2982-5 978-1-4757-2980-1. U R L: https://link.springer.
com/chapter/10.1007/978-1-4757-2980-1_10 (visited on 07/14/2017).

[9] John D. Bransford and Marcia K. Johnson. „Contextual prerequisites for under-
standing: Some investigations of comprehension and recall.“ In: Journal of Verbal
Learning and Verbal Behavior 11.6 (Dec. 1972), pp. 717–726. I S S N: 00225371. D O I:
10.1016/S0022-5371(72)80006-9. U R L: http://linkinghub.elsevier.com/
retrieve/pii/S0022537172800069 (visited on 07/14/2017).

[10] Bart J. Brickman, Lawrence J. Hettinger, and Michael W. Haas. „Multisensory In-
terface Design for Complex Task Domains: Replacing Information Overload With
Meaning in Tactical Crew Stations.“ In: The International Journal of Aviation Psychol-
ogy 10.3 (July 1, 2000), pp. 273–290. I S S N: 1050-8414. D O I: 10.1207/S15327108IJAP1003_
04. U R L: http://dx.doi.org/10.1207/S15327108IJAP1003_04.

[11] DE Broadbent. „The magic number seven after fifteen years.“ In: Studies in long
term memory. Ed. by A Kennedy and A Wilkes. London: Wiley, 1975, pp. 3–18.

[12] CallMiner. Phonetics vs. LVCSR: Under the Hood of Speech Analytics. CallMiner.
Apr. 6, 2013. U R L: https://callminer.com/blog/phonetics-vs-lvcsr-hood-
speech-analytics/ (visited on 09/03/2017).

87

Bibliography

[13] Gérard Chollet, Asmaa Amehraye, Joseph Razik, Leila Zouari, Houssemeddine
Khemiri, and Chafic Mokbel. „Spoken Dialogue in Virtual Worlds.“ In: Develop-
ment of Multimodal Interfaces: Active Listening and Synchrony. Ed. by Anna Esposito,
Nick Campbell, Carl Vogel, Amir Hussain, and Anton Nijholt. Lecture Notes in
Computer Science 5967. Springer Berlin Heidelberg, 2010, pp. 423–443. I S B N: 978-
3-642-12396-2 978-3-642-12397-9. U R L: http://link.springer.com/chapter/10.
1007/978-3-642-12397-9_36 (visited on 04/21/2017).

[14] Marie-Thérèse Claes and Marinel Gerritsen. Culturele waarden en communicatie in
internationaal perspectief. 3., herz. dr. OCLC: 930883864. Bussum: Coutinho, 2011.
294 pp. I S B N: 978-90-469-0304-9.

[15] Herbert Clark. „Language Use and Language Users.“ In: Gardner Lindzey and
Elliot Aronson. Handbook of social psychology. 3rd. New York : Random House,
c1985., 1985, pp. 179–231. I S B N: 978-0-394-35049-3.

[16] Josh Clark. Designing for Touch. A Book Apart, Sept. 2016. U R L: http://proquestcombo.
safaribooksonline.com/9781492017851 (visited on 04/13/2017).

[17] Michael H. Cohen, James P. Giangola, and Jennifer Balogh. Voice User Interface De-
sign. Addison-Wesley Professional, Feb. 2004. I S B N: 978-0-321-18576-1. U R L: http:
//proquestcombo.safaribooksonline.com/0321185765 (visited on 04/04/2017).

[18] Nuance Communications. Nuance Developers. Aug. 7, 2017. U R L: https://developer.
nuance.com/public/index.php?task=mix (visited on 07/08/2017).

[19] Apache Cordova. Architectural overview of Cordova platform - Apache Cordova. Aug. 10,
2017. U R L: http://cordova.apache.org/docs/en/latest/guide/overview/
index.html (visited on 08/10/2017).

[20] David Crystal. The Cambridge Encyclopedia of the English Language. Google-Books-
ID: Kh_RZhvHk0YC. Cambridge University Press, Aug. 4, 2003. 226 pp. I S B N:
978-0-521-53033-0.

[21] Arianna D’Ulizia. „Exploring multimodal input fusion strategies.“ In: The Hand-
book of Research on Multimodal Human Computer Interaction and Pervasive Services:
Evolutionary Techniques for Improving Accessibility (2009), pp. 34–57. U R L: http:
//books.google.com/books?hl=en&lr=&id=O8CqMtIKSWwC&oi=fnd&pg=PA34&

dq=%22with+embedded+software+and%22+%22the+universal+accessibility+

concept, +are:%22+%22which+refers+to+the+simultaneous+or%22+%22of+

usability,+accessibility,+flexibility+and%22+%22well+as+users+with+

disabilities.+Finally,+it%22+&ots=NZfqTSFGYb&sig=HC82ik_FuQ8eu7Wg1KmhxLLf3Ts

(visited on 06/12/2017).

[22] H Kirk Downey, Don Hellriegel, and John W. Slocum. Organizational behavior : a
reader. St. Paul : West Pub. Co., c1977., 1977. I S B N: 978-0-8299-0137-5.

[23] The Economist. Bots, the next frontier. The Economist. Sept. 4, 2016. U R L: http:
//www.economist.com/news/business-and-finance/21696477-market-apps-

maturing-now-one-text-based-services-or-chatbots-looks-poised (visited
on 06/28/2017).

[24] The Univerity of Edinburgh. Festival. Sept. 1, 2017. U R L: http://www.cstr.ed.ac.
uk/projects/festival/ (visited on 09/01/2017).

88

Bibliography

[25] Jens Edlund and Jonas Beskow. „Pushy versus meek-using avatars to influence
turn-taking behaviour.“ In: Eighth Annual Conference of the International Speech Com-
munication Association. 2007. U R L: https://www.researchgate.net/profile/
Jens_Edlund/publication/221485203_Pushy_versus_meek_-_Using_avatars_

to_influence_turn-taking_behaviour/links/0fcfd506ad6ca6c27d000000.pdf

(visited on 06/27/2017).

[26] Birgit Endrass, Matthias Rehm, and Elisabeth André. „Culture-specific commu-
nication management for virtual agents.“ In: Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 1. International
Foundation for Autonomous Agents and Multiagent Systems, 2009, pp. 281–287.
U R L: http://dl.acm.org/citation.cfm?id=1558052 (visited on 06/27/2017).

[27] Facebook. Messenger Bots for Business & Developers. June 28, 2017. U R L: https:
//messenger.fb.com/ (visited on 06/28/2017).

[28] Brian M. Fagan and Charlotte Beck. The Oxford Companion to Archaeology. Google-
Books-ID: ystMAgAAQBAJ. Oxford University Press, 1996. 865 pp. I S B N: 978-0-
19-507618-9.

[29] Usability First. Usability First - Usability Glossary - menu-driven interface | Usability
First. 2017. U R L: index.html (visited on 06/10/2017).

[30] John C. Foster, Rachael Dutton, Mervyn A. Jack, Stephen Love, Ian A. Nairn, Nathalie
Vergeynst, and F. W. M. Stentiford. „Interactive Speech Technology.“ In: ed. by
Christopher Baber and Janet M. Noyes. Bristol, PA, USA: Taylor & Francis, Inc.,
1993, pp. 167–175. I S B N: 978-0-7484-0127-7. U R L: http://dl.acm.org/citation.
cfm?id=210140.210161.

[31] Toshiaki Fukada, Keiichi Tokuda, Takao Kobayashi, and Satoshi Imai. „An adap-
tive algorithm for mel-cepstral analysis of speech.“ In: Acoustics, Speech, and Signal
Processing, 1992. ICASSP-92., 1992 IEEE International Conference on. Vol. 1. IEEE,
1992, pp. 137–140. U R L: http://ieeexplore.ieee.org/abstract/document/
225953/ (visited on 09/01/2017).

[32] Pabini Gabriel-Petit. UXmatters :: Glossary :: Terms. Dec. 6, 2017. U R L: http://www.
uxmatters.com/glossary/ (visited on 06/12/2017).

[33] Daryle Jean Gardner-Bonneau. „Human Factors Problems in Interactive Voice
Response (IVR) Applications: Do we Need a Guideline/Standard?“ In: Proceed-
ings of the Human Factors and Ergonomics Society Annual Meeting 36.3 (Oct. 1, 1992),
pp. 222–226. I S S N: 1541-9312. D O I: 10.1518/107118192786751899. U R L: http:
//dx.doi.org/10.1518/107118192786751899.

[34] Jesse James Garrett. The elements of user experience. [electronic resource] : user-centered
design for the Web and beyond. Voices that matter. Berkeley, CA : New Riders, c2011.,
2011. I S B N: 978-0-321-68865-1.

[35] Google. Android Auto. Android. June 6, 2017. U R L: https://www.android.com/
auto/ (visited on 06/06/2017).

[36] Google. Design Principles and Methodology. May 6, 2017. U R L: https://developers.
google.com/actions/design/principles (visited on 04/19/2017).

[37] Google. Google Allo - A smart messaging app. June 28, 2017. U R L: https://allo.
google.com/ (visited on 06/28/2017).

[38] Google. Google Assistant - Your own personal Google. Google Assistant - Your own
personal Google. June 18, 2017. U R L: https://assistant.google.com/ (visited
on 06/19/2017).

89

Bibliography

[39] Google. Google Ngram Viewer. Aug. 29, 2017. U R L: https://books.google.com/
ngrams (visited on 08/29/2017).

[40] Google. How old is the Brookly bridge? Sept. 4, 2017. U R L: https : / / storage .

googleapis.com/cloud- samples- tests/speech/brooklyn.flac (visited on
09/04/2017).

[41] Google. Quickstart | Google Cloud Speech API Documentation | Google Cloud
Platform. Aug. 31, 2017. U R L: https://cloud.google.com/speech/docs/getting-
started (visited on 09/04/2017).

[42] Google. Speech API - Speech Recognition. Google Cloud Platform. Aug. 29, 2017.
U R L: https://cloud.google.com/speech/ (visited on 08/29/2017).

[43] Google. Understanding How Conversations Work:
The Key to a Better UI | Actions
on Google. Google Developers. May 17, 2017. U R L: https://developers.google.
com/actions/design/how-conversations-work (visited on 06/18/2017).

[44] Jeffrey O. Grady. „Introduction to Systems Requirements.“ In: System Require-
ments Analysis, 2nd Edition. 2nd ed. Elsevier, Sept. 19, 2013. I S B N: 978-0-12-417130-
5. U R L: http://proquestcombo.safaribooksonline.com/book/operations/
9780124171077/1dot-introduction/st0015_html.

[45] H. P. Grjoe. „Logic and conversation.“ In: Cole, P. and JL Morgan (cds), Syntax and
Semantics 3 (1975), pp. 41–58. U R L: https://www.researchgate.net/profile/
Barbara_Partee/publication/274129468_Formal_Semantics_Origins_Issues_

Early_Impact/links/574614d408ae9ace8424375f.pdf (visited on 04/24/2017).

[46] Dan Grover. Bots won’t replace apps. Better apps will replace apps. Apr. 2016. U R L:
http://dangrover.com/blog/2016/04/20/bots-wont-replace-apps.html

(visited on 04/08/2017).

[47] John H. L. Hansen and Sanjay Patil. „Speech Under Stress: Analysis, Modeling and
Recognition.“ In: Speaker Classification I. Ed. by Christian Müller. Lecture Notes in
Computer Science 4343. DOI: 10.1007/978-3-540-74200-5_6. Springer Berlin Hei-
delberg, 2007, pp. 108–137. I S B N: 978-3-540-74186-2 978-3-540-74200-5. U R L: http:
//link.springer.com/chapter/10.1007/978-3-540-74200-5_6 (visited on
06/08/2017).

[48] Marc Hassenzahl and Noam Tractinsky. „User experience - a research agenda.“
In: Behaviour & Information Technology 25.2 (Mar. 2006), pp. 91–97. I S S N: 0144-929X,
1362-3001. D O I: 10.1080/01449290500330331. U R L: http://www.tandfonline.
com/doi/abs/10.1080/01449290500330331 (visited on 06/10/2017).

[49] Julia Hirschberg. „N-Grams and Corpus Linguistics.“ Lecture. CS 4705. Oct. 2,
2007. U R L: http://www.cs.columbia.edu/~rambow/teaching/lecture-2007-
10-02.ppt (visited on 08/29/2017).

[50] Chih-Yuan Ho, Mark I. Nikolic, and Nadine B. Sarter. „Supporting timesharing
and interruption management through multimodal information presentation.“ In:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Vol. 45.
SAGE Publications, 2001, pp. 341–345. U R L: http://pro.sagepub.com/content/
45/4/341.short (visited on 06/12/2017).

[51] L. Richard Hoffman. „Applying Experimental Research on Group Problem Solving
to Organizations.“ In: The Journal of Applied Behavioral Science 15.3 (July 1, 1979),
pp. 375–391. I S S N: 0021-8863. D O I: 10.1177/002188637901500311. U R L: http:
//journals.sagepub.com/doi/abs/10.1177/002188637901500311.

90

Bibliography

[52] Computer Hope. When was the first keyboard invented? Apr. 26, 2017. U R L: https:
//www.computerhope.com/issues/ch001802.htm (visited on 05/18/2017).

[53] IBM. IBM Knowledge Center. Call Flow Diagrams. July 7, 2017. U R L: https://www.
ibm.com/support/knowledgecenter/en/SS8PJ7_8.5.1/com.ibm.xtools.ngn_

toolkit.doc/topics/c_callflow.html (visited on 07/08/2017).

[54] Ionic. Build Amazing Native Apps and Progressive Web Apps with Ionic Framework and
Angular. Ionic Framework. Aug. 10, 2017. U R L: https://ionicframework.com/
(visited on 08/10/2017).

[55] Ionic. Ionic Framework. Ionic Framework | Speech Recognition. Aug. 11, 2017. U R L:
https://ionicframework.com/docs/native/speech-recognition/ (visited on
08/11/2017).

[56] Ionic. Ionic Framework. Ionic Framework | Text To Speech. Aug. 11, 2017. U R L:
https : / / ionicframework . com / docs / native / text - to - speech/ (visited on
08/11/2017).

[57] IonicV1. Download - Ionic Components. Aug. 10, 2017. U R L: https://ionicframework.
com/docs/v1/overview/#download (visited on 08/10/2017).

[58] Nina G. Jablonski and Leslie Aiello, eds. The origin and diversification of language.
Wattis Symposium series in anthropology no. 24. San Francisco, Calif: Califor-
nia Academy of Sciences : Distributed by the University of California Press, 1998.
202 pp. I S B N: 978-0-940228-44-3.

[59] James Madison. In: Wikipedia. Page Version ID: 785434326. June 13, 2017. U R L:
https://en.wikipedia.org/w/index.php?title=James_Madison&oldid=

785434326.

[60] Jinwoo Kim, Jae Hong Ryu, and Tae Man Han. „Multimodal Interface Based on
Novel HMI UI/UX for In-Vehicle Infotainment System.“ In: ETRI Journal 37.4 (Aug.
2015), pp. 793–803. I S S N: 12256463. D O I: 10.4218/etrij.15.0114.0076. U R L:
http : / / search . ebscohost . com / login . aspx ? direct = true & AuthType = ip ,

cookie,url,cpid,uid&custid=s8863137&db=iih&AN=108832367&site=eds-

live&scope=site&authtype=ip,uid (visited on 04/17/2017).

[61] Dan Jurafsky and James H. Martin. Speech and Language Processing. Pearson, 2014.
939 pp. I S B N: 978-1-292-02543-8.

[62] Karen Kaushansky. I hear voices: Explorations of multidevice experiences with conver-
sational assistants: UX, IoT & interaction conference: O’Reilly Design, January 19 - 22,
2016, San Francisco, CA. Jan. 20, 2016. U R L: https://conferences.oreilly.com/
design/ux-interaction-iot-us-2016/public/schedule/detail/45414 (visited
on 08/28/2017).

[63] Kyungduk Kim, Cheongjae Lee, Sangkeun Jung, and Gary Geunbae Lee. „A frame-
based probabilistic framework for spoken dialog management using dialog exam-
ples.“ In: Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue. Associa-
tion for Computational Linguistics, 2008, pp. 120–127. U R L: http://dl.acm.org/
citation.cfm?id=1622088 (visited on 04/24/2017).

[64] Paul Kinlan. Mobile Web UX - Chrome Dev Summit. 2017. U R L: http://mobile-
ux.appspot.com/#56 (visited on 04/17/2017).

[65] Jules Kremer. Angular: Angular, version 2: proprioception-reinforcement. Angular. Sept. 14,
2016. U R L: http://angularjs.blogspot.com/2016/09/angular2-final.html.

91

Bibliography

[66] J. D. Lee, B. Caven, S. Haake, and T. L. Brown. „Speech-based interaction with
in-vehicle computers: the effect of speech-based e-mail on drivers’ attention to
the roadway.“ In: Human Factors 43.4 (2001), pp. 631–640. I S S N: 0018-7208. D O I:
10.1518/001872001775870340.

[67] Stephen Love, RT Dutton, John C Foster, Mervyn A Jack, and FWM Stentiford.
„Identifying salient usability attributes for automated telephone services.“ In: Third
International Conference on Spoken Language Processing. 1994.

[68] Travis Lowdermilk. User-Centered Design. O’Reilly Media, Inc., Apr. 4, 2013. 154 pp.
I S B N: 978-1-4493-5980-5. U R L: http://proquestcombo.safaribooksonline.com/
9781449359812.

[69] Paul Luff, David Frohlich, and Nigel G. Gilbert. Computers and Conversation. Else-
vier, June 2014. I S B N: 978-0-08-050264-9.

[70] Max Lynch. Announcing Ionic 2.0.0 Final. The Official Ionic Blog. Jan. 25, 2017.
U R L: http://blog.ionic.io/announcing-ionic-2-0-0-final/ (visited on
08/10/2017).

[71] Mark ter Maat and Dirk Heylen. „Generating Simple Conversations.“ In: Develop-
ment of Multimodal Interfaces: Active Listening and Synchrony. Ed. by Anna Esposito,
Nick Campbell, Carl Vogel, Amir Hussain, and Anton Nijholt. Lecture Notes in
Computer Science 5967. DOI: 10.1007/978-3-642-12397-9_7. Springer Berlin Hei-
delberg, 2010, pp. 92–101. I S B N: 978-3-642-12396-2 978-3-642-12397-9. U R L: http:
//link.springer.com/chapter/10.1007/978-3-642-12397-9_7 (visited on
06/27/2017).

[72] Chatbots Magazine. China, WeChat and the Origins of Chatbots. Chatbots Magazine.
Mar. 12, 2017. U R L: https://chatbotsmagazine.com/china-wechat-and-the-
origins-of-chatbots-89c481f15a44 (visited on 06/28/2017).

[73] Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonzalez Arenas, Kan-
ishka Rao, David Rybach, Ouais Alsharif, Hasim Sak, Alexander Gruenstein, Fran-
coise Beaufays, and Carolina Parada. „Personalized Speech recognition on mobile
devices.“ In: arXiv:1603.03185 [cs] (Mar. 2016). U R L: http://arxiv.org/abs/1603.
03185 (visited on 03/26/2017).

[74] Mary Meekers. 2016 Internet Trends Report. Jan. 6, 2016. U R L: http://www.kpcb.
com/internet-trends (visited on 05/19/2017).

[75] Microsoft. Cortana | Your Intelligent Virtual & Personal Assistant | Microsoft. June 18,
2017. U R L: www.microsoft.com/en-us/windows/cortana (visited on 06/19/2017).

[76] Microsoft. Get started with the Azure Speech REST API using cURL. Mar. 16, 2017.
U R L: https : / / docs . microsoft . com / en - us / azure / cognitive - services /
speech/getstarted/getstarted-curl (visited on 09/04/2017).

[77] Microsoft. Pricing - Bing Speech API | Microsoft Azure. Aug. 29, 2017. U R L: https://
azure.microsoft.com/en-us/pricing/details/cognitive-services/speech-

api/ (visited on 08/30/2017).

[78] Microsoft. The GUI versus the Command Line: Which is better? (Part 1). Microsoft.com
Operations. Dec. 3, 2007. U R L: https://blogs.technet.microsoft.com/mscom/
2007/03/12/the-gui-versus-the-command-line-which-is-better-part-1/

(visited on 06/10/2017).

[79] André Miede. Neue Wege im Bereich „Interactive Fiction“. July 6, 2016.

92

Bibliography

[80] George A. Miller. „The magical number seven, plus-or-minus two, some limits
to our capacity for processing information.“ In: Brain Physiology and Psychology.
Buttenvorths: London (1967), pp. 175–200. U R L: http : / / books . google . com /

books ? hl = en & lr = &id = rQGiUlAtpQUC & oi = fnd & pg = PA175 & dq = %22Magical +

Number+Seven, +Plus+or+Minus%22+%22This+number+assumes+a+variety+

of + disguises , +being + sometimes + a + little + larger + and + sometimes % 22 +

%22information.+Since+these+experiments+would+not+have+been+done+

without+the+appearance%22+&ots=VWAD4ovhQa&sig=HxgV4dXlZ1dbYR9203gda7nxx_

0 (visited on 04/24/2017).

[81] Bruno Müller. Designing native apps for Android and iOS: key differences and simi-
larities. Cheesecake Labs. Sept. 20, 2016. U R L: https://cheesecakelabs.com/
blog/designing-native-apps-for-android-and-ios-key-differences-and-

similarities/ (visited on 07/08/2017).

[82] Robert J. Moore, Rafa H. Hosn, and Ashima Arora. The Machinery of Natural Con-
versation and the Design of Conversational Machines.pdf. Jan. 1, 2016.

[83] Anh Nguyen and Wayne Wobcke. „An agent-based approach to dialogue manage-
ment in personal assistants.“ In: ACM Press, 2005, p. 137. I S B N: 978-1-58113-894-8.
D O I: 10.1145/1040830.1040865. U R L: http://portal.acm.org/citation.cfm?
doid=1040830.1040865 (visited on 04/24/2017).

[84] Mark I. Nikolic and Nadine B. Sarter. „Peripheral Visual Feedback: A Powerful
Means of Supporting Effective Attention Allocation in Event-Driven, Data-Rich
Environments.“ In: Human Factors 43.1 (Mar. 1, 2001), pp. 30–38. I S S N: 0018-7208.
D O I: 10.1518/001872001775992525. U R L: http://journals.sagepub.com/doi/
abs/10.1518/001872001775992525.

[85] Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in Com-
mon Lisp. Google-Books-ID: eH6jBQAAQBAJ. Morgan Kaufmann, June 28, 2014.
975 pp. I S B N: 978-0-08-057115-7.

[86] Jan Nouza, Jindrich Zdansky, Petr Cerva, and Jan Silovsky. „Challenges in Speech
Processing of Slavic Languages (Case Studies in Speech Recognition of Czech and
Slovak).“ In: Development of Multimodal Interfaces: Active Listening and Synchrony.
Lecture Notes in Computer Science. DOI: 10.1007/978-3-642-12397-9_19. Springer,
Berlin, Heidelberg, 2010, pp. 225–241. I S B N: 978-3-642-12396-2 978-3-642-12397-9.
U R L: https://link.springer.com/chapter/10.1007/978-3-642-12397-9_19
(visited on 08/29/2017).

[87] Chris O´Sullivan. A Tale of Two Platforms: Designing for Both Android and iOS. Web
Design Envato Tuts+. Apr. 15, 2015. U R L: https://webdesign.tutsplus.com/
articles/a- tale- of- two- platforms- designing- for- both- android- and-

ios--cms-23616 (visited on 07/08/2017).

[88] Sharon Oviatt. „Human-centered Design Meets Cognitive Load Theory: Designing
Interfaces That Help People Think.“ In: Proceedings of the 14th ACM International
Conference on Multimedia. MM ’06. New York, NY, USA: ACM, 2006, pp. 871–880.
I S B N: 978-1-59593-447-5. D O I: 10.1145/1180639.1180831. U R L: http://doi.acm.
org/10.1145/1180639.1180831.

[89] Michael P. Georgeff and Amy Lansky. Reactive Reasoning and Planning. Jan. 1, 1987.
677 pp.

[90] Cathy Pearl. Designing Voice User Interfaces. 2016. I S B N: 978-1-4919-5541-3. U R L:
http://shop.oreilly.com/product/0636920050056.do (visited on 03/25/2017).

93

Bibliography

[91] Cathy Pearl and Ian Menzies. „DESIGNING FOR DEVICES WITHOUT SCREENS.“
In: Designing Voice User Interfaces. 2016. I S B N: 978-1-4919-5541-3. U R L: http://
shop.oreilly.com/product/0636920050056.do (visited on 03/25/2017).

[92] Rob Price. One of Mark Zuckerberg’s ’big regrets’ shows why he’s going all-in on virtual
reality. Business Insider. Nov. 16, 2015. U R L: http://www.businessinsider.com/
mark- zuckerberg- virtual- reality- big- regret- oculus- rift- messenger-

2015-11 (visited on 06/28/2017).

[93] Randolph Quirk and Sidney Greenbaum. A Concise Grammar of Contemporary En-
glish. Google-Books-ID: CNZ4AAAAIAAJ. Harcourt Brace Jovanovich, 1973. 506 pp.
I S B N: 978-0-15-512930-6.

[94] Lawrence R. Rabiner. „A tutorial on hidden Markov models and selected appli-
cations in speech recognition.“ In: Proceedings of the IEEE 77.2 (1989), pp. 257–286.
U R L: http://ieeexplore.ieee.org/abstract/document/18626/ (visited on
08/13/2017).

[95] Anand Rao and Michael P. Georgeff. „BDI agents: From theory to practice.“ In:
(Nov. 2000).

[96] Jack C. Richards. „Conversation.“ In: TESOL Quarterly 14.4 (1980), pp. 413–432.
I S S N: 0039-8322. D O I: 10.2307/3586231. U R L: http://www.jstor.org/stable/
3586231.

[97] Rutger Rienks and Dirk Heylen. DOMINANCE DETECTION IN MEETINGS US-
ING EASILY OBTAINABLE FEATURES. 2002.

[98] Nadine B. Sarter. „Multimodal information presentation: Design guidance and
research challenges.“ In: International Journal of Industrial Ergonomics 36.5 (May
2006), pp. 439–445. I S S N: 01698141. D O I: 10.1016/j.ergon.2006.01.007. U R L:
http://linkinghub.elsevier.com/retrieve/pii/S0169814106000217 (visited
on 06/09/2017).

[99] Sass. Sass: Syntactically Awesome Style Sheets. Aug. 11, 2017. U R L: http://sass-
lang.com/ (visited on 08/12/2017).

[100] Emanuel A. Schegloff. „Overlapping talk and the organization of turn-taking for
conversation.“ In: Language in society 29.1 (2000), pp. 1–63. U R L: http://journals.
cambridge.org/abstract_S0047404500001019 (visited on 04/24/2017).

[101] Emanuel A. Schegloff. „Repair After Next Turn: The Last Structurally Provided
Defense of Intersubjectivity in Conversation.“ In: American Journal of Sociology 97.5
(1992), pp. 1295–1345. I S S N: 0002-9602. U R L: http://www.jstor.org/stable/
2781417.

[102] Emanuel A. Schegloff. Sequence Organization in Interaction: Volume 1: A Primer in
Conversation Analysis. Cambridge University Press, Jan. 2007. I S B N: 978-0-521-
53279-2.

[103] Deborah Schiffrin. Discourse Markers. Studies in Interactional Sociolinguistics. DOI:
10.1017/CBO9780511611841. Cambridge University Press, 1987.

[104] Robert M. Schumacher, Mary L. Hardzinski, and Amy L. Schwartz. „Increasing
the Usability of Interactive Voice Response Systems: Research and Guidelines for
Phone-Based Interfaces.“ In: Human Factors 37.2 (June 1, 1995), pp. 251–264. I S S N:
0018-7208. D O I: 10.1518/001872095779064672. U R L: http://journals.sagepub.
com/doi/abs/10.1518/001872095779064672.

94

Bibliography

[105] Aaron E. Sklar and Nadine B. Sarter. „Good Vibrations: Tactile Feedback in Sup-
port of Attention Allocation and Human-Automation Coordination in Event-Driven
Domains.“ In: Human Factors 41.4 (Dec. 1, 1999), pp. 543–552. I S S N: 0018-7208. D O I:
10.1518/001872099779656716. U R L: http://journals.sagepub.com/doi/abs/
10.1518/001872099779656716.

[106] International Organization for Standardization. Ergonomics of human-system interac-
tion — Part 210: Human-centred design for interactive system (ISO 9241-210:2010). 2010.
U R L: https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-1:v1:en.

[107] Statista. Anzahl der Apps in den Top App-Stores 2016 | Statistik. Statista. Aug. 6, 2017.
U R L: https://de.statista.com/statistik/daten/studie/208599/umfrage/
anzahl-der-apps-in-den-top-app-stores/ (visited on 06/08/2017).

[108] Telegram. Bots: An introduction for developers. June 28, 2017. U R L: https://core.
telegram.org/bots (visited on 06/28/2017).

[109] James Tiongson. Mobile App Marketing Insights: How Consumers Really Find and Use
Your Apps. Think with Google. May 2017. U R L: https://www.thinkwithgoogle.
com/consumer-insights/mobile-app-marketing-insights/ (visited on 06/08/2017).

[110] Keiichi Tokuda, Heiga Zen, and Alan W. Black. „An HMM-based speech synthesis
system applied to English.“ In: IEEE Speech Synthesis Workshop. 2002, pp. 227–230.
U R L: http://www.scs.cmu.edu/afs/cs.cmu.edu/Web/People/awb/papers/
IEEE2002/hmmenglish.pdf (visited on 09/01/2017).

[111] Liam Tung. Make room: Android apps get bigger as Google doubles file sizes for developers.
ZDNet. Sept. 29, 2015. U R L: http : / / www . zdnet . com / article / make - room -
android-apps-get-bigger-as-google-doubles-file-sizes-for-developers/

(visited on 07/17/2017).

[112] Twine. Twine / An open-source tool for telling interactive, nonlinear stories. Aug. 10,
2017. U R L: https://twinery.org/ (visited on 08/10/2017).

[113] UNESCO. Adult literacy rate, population 15+ years, both sexes (%) | Data. 2010. U R L:
http://data.worldbank.org/indicator/SE.ADT.LITR.ZS?end=2015&start=

1970&view=chart (visited on 05/18/2017).

[114] All Bout UX. User experience definitions « All About UX. Dec. 6, 2017. U R L: http:
//www.allaboutux.org/ux-definitions (visited on 06/12/2017).

[115] Kris Van Hees and Jan Engelen. „Equivalent representations of multimodal user
interfaces: Runtime Reification of Abstract User Interface Descriptions.“ In: Univer-
sal Access in the Information Society 12.4 (Nov. 2013), pp. 339–368. I S S N: 1615-5289,
1615-5297. D O I: 10.1007/s10209-012-0282-z. U R L: http://link.springer.
com/10.1007/s10209-012-0282-z (visited on 04/25/2017).

[116] W3C. Glossary of Terms for Device Independence. 2005. U R L: https://www.w3.org/
TR/di-gloss/#def-user-experience (visited on 06/12/2017).

[117] Jan Weddehage. User Experience Dossier – Teil 1: UI versus UX. Nov. 2015. U R L:
https://entwickler.de/online/ux/user-experience-dossier-teil-1-ui-

versus-ux-185990.html (visited on 03/26/2017).

[118] Susan Weinschenk and Dean T. Barker. Designing effective speech interfaces. Google-
Books-ID: O1tTAAAAMAAJ. John Wiley & Sons, Mar. 3, 2000. 424 pp. I S B N: 978-
0-471-37545-6.

[119] Michael Wooldridge and Nicholas R. Jennings. Intelligent Agents: Theory and Prac-
tice. Vol. 10. DOI: 10.1017/S0269888900008122. Feb. 1, 1970.

95

Bibliography

[120] Xiaojun Wu, Fang Zheng, and Mingxing Xu. „Topic Forest: a plan-based dialog
management structure.“ In: 2001 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Proceedings (Cat. No.01CH37221). Vol. 1. 2001, 617–620 vol.1.
D O I: 10.1109/ICASSP.2001.940907.

[121] Nicole Yankelovich, Gina-Anne Levow, and Matt Marx. „Designing SpeechActs:
Issues in Speech User Interfaces.“ In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’95. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1995, pp. 369–376. I S B N: 978-0-201-84705-5. D O I: 10.1145/
223904.223952. U R L: http://dx.doi.org/10.1145/223904.223952.

[122] B. L. Zeigler and B. Bazor. „Dialog design for a speech-interactive automation
system.“ In: Interactive Voice Technology for Telecommunications Applications, 1994.,
Second IEEE Workshop on. IEEE, 1994, pp. 113–116. U R L: http://ieeexplore.ieee.
org/abstract/document/341532/ (visited on 04/24/2017).

[123] api.ai. Building Your First Agent. API.AI. Aug. 7, 2017. U R L: https://api.ai/
docs/getting-started/building-your-first-agent (visited on 07/08/2017).

[124] wit.ai. Wit.ai. Aug. 7, 2017. U R L: https://wit.ai/ (visited on 07/08/2017).

96

List of Figures

2.1 Visual interface of a multimodal car entertainment system 8
2.2 Response of the Google Assistant to request to show a list of the American

presidents . 13
2.3 Locations which can be easily reached with a thumb on a phone [16] . . . 14
2.4 List of closest parks provided by the Google Assistant 15

3.1 Series of screenshots taken when using the Google Assistant to get more
information about James Madison . 20

3.2 Expansion with adjacent pairs [102] . 23

4.1 UCD in context [68] . 30
4.2 An example for a simple flow diagram . 36
4.3 Difference between a wireframe and a mockup 38
4.4 Disambiguation on the screen . 44
4.5 Result of user’s preference regarding error recovery [17] 46

5.1 Overview of parts of a VUI application [13] 49
5.2 A fully connected Markov model [94] . 51
5.3 Simple example of a finite state based dialog manager [122] 58
5.4 A frame based information representation [63] 59
5.5 The information representation in a plan based DM [120] 61

6.1 Screenshots from the existing prototype . 67
6.2 Mockup of the new player . 70
6.3 Overview of the VUI part of TaleTime . 76
6.4 Control flow of the VUI and the called methods 78

List of Tables

5.1 Prices of Google’s REST speech API . 54
5.2 Result of sample audio files from Google’s REST Speech API 54
5.3 Prices of Microsoft’s Bing Speech API . 55
5.4 Result of sample audio files from Microsoft’s Speech API 55
5.5 The meaning of a sentence can change depending on its intonation [17] . . 62

Listings

97

Listings

6.1 Part of output section of English grammar JSON 72
6.2 Part of the input section of English grammar JSON 73
6.3 Method to create the answer texts, used as output by the VUI 79
6.4 The method used for matching . 81

A.1 The package.json file of the TaleTime project 105

B.1 The English grammar file of the TaleTime project 107

C.1 The result of the Google Speech API for sample 1 111
C.2 The result of the Google Speech API for sample 2 111

D.1 The simple result of Microsoft’s Speech API for sample 1 113
D.2 The detailed result of Microsoft’s Speech API for sample 1 113
D.3 The simple result of Microsoft’s Speech API for sample 2 113
D.4 The detailed result of Microsoft’s Speech API for sample 2 114

98

Abbreviations

APK Android Application Package

AP Additional Property

API Application Programming Interface

ATM Automatic Teller Machine

CA Conversation Analysis

CSS Cascading Style Sheets

DM Dialog Manager

DOM Document Object Model

FAQ Frequently Asked Questions

IVR Interactive Voice Response

JSON JavaSript Object Notation

GPU Graphical Processing Unit]

GUI Graphical User Interface

HCI Human Computer Interaction

HMM Hidden Markov Model

HTML Hypertext MArkup Language

IT Information Technology

LVCSR Large Vocabulary Continuous Speech Recognition

MLSA Mel Log Spectrum Approximation

NLU Natural Language Understanding

NLP Natural Language Processing

NSP No Speech Timeout

PP Primary Property

PRS Procedural Reasoning System

REST Representational State Transfer

SPA Single Page Application

SASS Syntactically Awesome Style Sheets

99

Listings

SDK Software Development Kit

SP Secondary Property

SRA System Requirements Analysis

TCU Turn Constructional Units

TMS Too Much Speed

TTS Text To Speech

UCD User Centered Design

UI User Interface

UX User Experience

VUI Voice User Interface

XML Extended Markup Language

100

Trademarks

The following list gives an overview about all trademarks used in this thesis.

Amazon™

Amazon Echo™

Amazon Alexa™

Android™

Angular™

Apache Cordova™

Api.ai™

Apple™

Apple iOS™

Apple Siri™

Facebook™

Google™

Google Allo™

Google Assistant™

Google Books N-Gram Viewer™

Google Nexus™

IBM™

Ionic™

Microsoft™

Microsoft Azure™

Microsoft Bing™

Microsoft Cortana™

Nuance™

Nuance Mix™

O’ Reilly™

Sass©

101

Listings

Telegram™

Twine™

WeChat©

Wit.ai©

102

Appendix

103

A package.json of the TaleTime project

The package.json contains all dependencies used in the TaleTime application. Additionally,
all versions are listed.

1 {

2 "name": "TaleTime",

3 "version": "1.0.0",

4 "author": "htw Saar",

5 "homepage": "https://www.htwsaar.de/",

6 "private": true,

7 "scripts": {

8 "clean": "ionic -app -scripts clean",

9 "build": "ionic -app -scripts build",

10 "lint": "ionic -app -scripts lint",

11 "ionic:serve": "ionic -app -scripts serve",

12 "ionic:run -ad": "ionic cordova run android --device"

13 },

14 "dependencies": {

15 "@angular/common": "4.1.0",

16 "@angular/compiler": "4.1.0",

17 "@angular/compiler -cli": "4.1.0",

18 "@angular/core": "4.1.0",

19 "@angular/forms": "4.1.0",

20 "@angular/http": "4.1.0",

21 "@angular/platform -browser": "4.1.0",

22 "@angular/platform -browser -dynamic": "4.1.0",

23 "@ionic -native/core": "3.7.0",

24 "@ionic -native/file": "^3.12.1",

25 "@ionic -native/globalization": "^4.1.0",

26 "@ionic -native/native -audio": "^3.14.0",

27 "@ionic -native/speech -recognition": "^4.1.0",

28 "@ionic -native/splash -screen": "3.7.0",

29 "@ionic -native/status -bar": "3.7.0",

30 "@ionic -native/text -to-speech": "^4.1.0",

31 "@ionic/storage": "2.0.1",

32 "cordova -android": "^6.2.2",

33 "cordova -plugin -android -permissions": "^1.0.0",

34 "cordova -plugin -compat": "^1.0.0",

35 "cordova -plugin -console": "^1.0.7",

36 "cordova -plugin -device": "^1.1.6",

37 "cordova -plugin -file": "^4.3.3",

38 "cordova -plugin -globalization": "^1.0.7",

39 "cordova -plugin -nativeaudio": "^3.0.9",

40 "cordova -plugin -speechrecognition": "^1.1.2",

41 "cordova -plugin -splashscreen": "^4.0.3",

105

A package.json of the TaleTime project

42 "cordova -plugin -statusbar": "^2.2.3",

43 "cordova -plugin -tts": "^0.2.3",

44 "cordova -plugin -whitelist": "^1.3.2",

45 "inquirer": "^3.2.1",

46 "ionic -angular": "3.2.0",

47 "ionic -plugin -keyboard": "^2.2.1",

48 "ionicons": "3.0.0",

49 "ng2-translate": "^5.0.0",

50 "rxjs": "5.1.1",

51 "sw-toolbox": "3.6.0",

52 "ts-data.stack": "^1.0.6",

53 "zone.js": "0.8.10"

54 },

55 "devDependencies": {

56 "@ionic/app -scripts": "1.3.7",

57 "@ionic/cli -utils": "^1.7.0",

58 "ionic": "3.10.1",

59 "typescript": "2.2.1"

60 },

61 "cordovaPlugins": [

62 "cordova -plugin -whitelist",

63 "cordova -plugin -statusbar",

64 "cordova -plugin -device",

65 "cordova -plugin -console",

66 "ionic -plugin -keyboard",

67 "cordova -plugin -splashscreen"

68],

69 "cordovaPlatforms": [],

70 "description": "TaleTime: A project of htw Saar",

71 "cordova": {

72 "plugins": {

73 "cordova -plugin -console": {},

74 "cordova -plugin -device": {},

75 "cordova -plugin -splashscreen": {},

76 "cordova -plugin -statusbar": {},

77 "cordova -plugin -whitelist": {},

78 "ionic -plugin -keyboard": {},

79 "cordova -plugin -file": {},

80 "cordova -plugin -nativeaudio": {},

81 "cordova -plugin -android -permissions": {},

82 "cordova -plugin -globalization": {},

83 "cordova -plugin -tts": {},

84 "cordova -plugin -speechrecognition": {}

85 },

86 "platforms": [

87 "android"

88]

89 }

90 }

Listing A.1: The package.json file of the TaleTime project

106

B English grammar file for the TaleTime VUI

1 {

2 "answers": {

3 "multiple": [

4 {

5 "id": 0,

6 "value": "How do you want the story to continue: "

7 },

8 {

9 "id": 1,

10 "value": "How would you like to continue: "

11 },

12 {

13 "id": 2,

14 "value": "You have the choice: "

15 }

16],

17 "single": [

18 {

19 "id": 0,

20 "value": "Do you want to continue ?"

21 },

22 {

23 "id": 1,

24 "value": "Continue ?"

25 }

26],

27 "help": [

28 {

29 "id": 0,

30 "value": "Tap a button on the screen to continue"

31 }

32]

33 },

34 "linking": {

35 "or": [

36 {

37 "id": 0,

38 "value": "or"

39 }

40],

41 "and": [

42 {

43 "id": 0,

107

B English grammar file for the TaleTime VUI

44 "value": "and"

45 }

46]

47 },

48 "repeat": [

49 {

50 "id": 0,

51 "value": "There was no match. Please say that again."

52 },

53 {

54 "id": 1,

55 "value": "Please say that again."

56 },

57 {

58 "id": 2,

59 "value": "Oops. Please say that again."

60 }

61],

62 "agree": [

63 {

64 "id": 0,

65 "value": "Yes"

66 },

67 {

68 "id": 1,

69 "value": "Okay"

70 },

71 {

72 "id": 2,

73 "value": "Yep"

74 }

75],

76 "decline": [

77 {

78 "id": 0,

79 "value": "No"

80 }

81],

82 "enum": [

83 {

84 "id": 0,

85 "value": "first",

86 "index": 1

87 },

88 {

89 "id": 1,

90 "value": "second",

91 "index": 2

92 },

93 {

108

94 "id": 2,

95 "value": "third",

96 "index": 3

97 }

98],

99 "backwards": [

100 {

101 "id": 0,

102 "value": "back"

103 },

104 {

105 "id": 1,

106 "value": "previous"

107 },

108 {

109 "id": 2,

110 "value": "last"

111 }

112],

113 "repeatChapter": [

114 {

115 "id": 0,

116 "value": "repeat"

117 },

118 {

119 "id": 1,

120 "value": "play again"

121 },

122 {

123 "id": 2,

124 "value": "start over"

125 }

126],

127 "doNotCare": [

128 {

129 "id": 0,

130 "value": "next"

131 },

132 {

133 "id": 1,

134 "value": "skip"

135 },

136 {

137 "id": 2,

138 "value": "move on"

139 },

140 {

141 "id": 3,

142 "value": "don 't care"

143 },

109

B English grammar file for the TaleTime VUI

144 {

145 "id": 4,

146 "value": "continue"

147 }

148]

149 }

Listing B.1: The English grammar file of the TaleTime project

110

C Results of Google Speech API as JSON

Listing C.1 shows the result of sample 1 which was professionally recorded. The original
text was How old is the Brooklyn Bridge?

1 {

2 "results": [

3 {

4 "alternatives": [

5 {

6 "transcript": "how old is the Brooklyn Bridge",

7 "confidence": 0.987629

8 }

9]

10 }

11]

12 }

Listing C.1: The result of the Google Speech API for sample 1

Listing C.2 shows the result of sample 2. The quality of this example is worse than the
one of sample 1. The original text was The quick brown fox jumps over the lazy dog.

1 {

2 "results": [

3 {

4 "alternatives": [

5 {

6 "transcript": "the quick brown fox jumped over the

lazy dog",

7 "confidence": 0.97975445

8 }

9]

10 }

11]

12 }

Listing C.2: The result of the Google Speech API for sample 2

111

D Results of Microsoft’s Speech API as
JSON

Listing D.1 shows the result of sample 1 which was professionally recorded. The original
text was How old is the Brooklyn Bridge?. In this result, the format option simple was used.

1 {

2 "RecognitionStatus": "Success",

3 "DisplayText": "How old is the Brooklyn bridge ?",

4 "Offset": 1100000,

5 "Duration": 16700000

6 }

Listing D.1: The simple result of Microsoft’s Speech API for sample 1

Listing D.2 shows the result of sample 1 which. Here, the format option detailed was
used.

1 {

2 "RecognitionStatus": "Success",

3 "Offset": 1100000,

4 "Duration": 16700000,

5 "NBest": [{

6 "Confidence": 0.95739913,

7 "Lexical": "how old is the brooklyn bridge",

8 "ITN": "how old is the Brooklyn bridge",

9 "MaskedITN": "how old is the Brooklyn bridge",

10 "Display": "How old is the Brooklyn bridge ?"

11 }]

12 }

Listing D.2: The detailed result of Microsoft’s Speech API for sample 1

Listing D.4 shows the result of sample 2. The quality of this example is worse than the
one of sample 1. The original text was The quick brown fox jumps over the lazy dog. In this
result, the format option simple was used.

1 {

2 "RecognitionStatus": "Success",

3 "DisplayText": "Brown Fox jumps over.",

4 "Offset": 13700000,

5 "Duration": 18900000

6 }

Listing D.3: The simple result of Microsoft’s Speech API for sample 2

Listing D.4 shows the result of sample 1 which. Here, the format option detailed was
used.

113

D Results of Microsoft’s Speech API as JSON

1 {

2 "RecognitionStatus": "Success",

3 "Offset": 13700000,

4 "Duration": 18900000,

5 "NBest": [{

6 "Confidence": 0.8211723,

7 "Lexical": "brown fox jumps over",

8 "ITN": "Brown Fox jumps over",

9 "MaskedITN": "Brown Fox jumps over",

10 "Display": "Brown Fox jumps over."

11 }, {

12 "Confidence": 0.8211723,

13 "Lexical": "brown fox jumps",

14 "ITN": "Brown Fox jumps",

15 "MaskedITN": "Brown Fox jumps",

16 "Display": "Brown Fox jumps."

17 }, {

18 "Confidence": 0.7018736,

19 "Lexical": "call brown fox jumps over",

20 "ITN": "call Brown Fox jumps over",

21 "MaskedITN": "call Brown Fox jumps over",

22 "Display": "Call Brown Fox jumps over."

23 }, {

24 "Confidence": 0.7018736,

25 "Lexical": "call brown fox jumps",

26 "ITN": "call Brown Fox jumps",

27 "MaskedITN": "call Brown Fox jumps",

28 "Display": "Call Brown Fox jumps."

29 }, {

30 "Confidence": 0.7018736,

31 "Lexical": "brown fox jumps over the lazy",

32 "ITN": "Brown Fox jumps over the lazy",

33 "MaskedITN": "Brown Fox jumps over the lazy",

34 "Display": "Brown Fox jumps over the lazy."

35 }]

36 }

Listing D.4: The detailed result of Microsoft’s Speech API for sample 2

114

Colophon

This document was created using the LATEX-template for graduation works at htw Saar
in the fields of study of applied computer science and mechatronics / sensor technology
(Version 2.1). The template was created by Yves Hary and André Miede (with friendly
support of Thomas Kretschmer, Helmut G. Folz und Martina Lehser).

Page data: (F)10.95 – (B)426.79135pt – (H)688.5567pt

