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Introduction to Numerical Weather Prediction

Boris Wiegand
Seminar “Computer Science and Society”
Sommersemester 2015
htw saar — Hochschule fiir Technik und Wirtschaft des Saarlandes

Abstract—Numerical weather prediction is an essential method
for meteorologists to forecast the weather and lead to more
precision in forecasting. Since the weather is a complex and
chaotic system, numerical weather prediction also displays a
high complexity. Therefore, this article gives an introduction for
people without any or just little knowledge on the topic through
illuminating the historical and conceptual aspects of numerical
weather prediction. Additionally, simple verification methods are
explained in order to examine the accuracy of weather forecasts.
If a reader is more interested in one of the aspects he can use
the gathered literature references to gain deeper knowledge.

I. INTRODUCTION

Although most people do not know how numerical weather
prediction works, they are highly interested in the results,
presented by TV weathermen or accessible via the Internet.
Before people leave their homes they check the weather
forecast to decide whether they need to take an umbrella with
them or not. Aeroplanes and ships need weather forecasts to
navigate safely. The importance of weather forecasts can also
be seen in a historical context. Actually, weather forecasts
were one reason for the success of the invasion of Allied troops
on D-Day [1].

Computer scientists, physicians, mathematicians and mete-
orologists combine their knowledge to achieve better forecasts
which is one indicator of the complexity of this research area.
This paper simplifies the access to this broad field, it shows
the origin of numerical weather prediction, the concept behind
it and examines the accuracy of modern weather forecasts.

II. FUNDAMENTALS OF METEOROLOGY

For a better understanding of weather forecasting one should
know about the fundamental processes which have an impact
on the weather. However, this is not the purpose of this paper.
The British meteorological service Met Office gives a good
introduction for beginners [2]. Advanced learners should have
a look on [3].

III. HISTORY

In order to enable numerical weather prediction, a lot of
scientific developments were needed. Meteorology had to
become a science, so that humans were able to understand
the physical processes which make the weather. Furthermore
numerical methods and computers had to be invented to enable
numerical simulations.

Already Aristotle wrote a book about meteorology [4].

In 1609 Johannes Kepler calculated the orbit of the planets
[5]. This means that he could predict the future position of two
planets by knowing their current position and momentum.

1686 Edmond Halley, famous by Halley’s Comet, could
explain the development of the trade winds by solar heating
[6]. Figure 1 shows an experiment which demonstrates this
effect. If you conduct this experiment you will see the flames
of the candles turning slightly to the centre. This is caused by
wind compensating the air pressure gradient between the high
and the low above the ground.
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Figure 1. Experiment demonstrating wind development by solar heating

George Hadley added earth’s rotation as a basic factor of
wind in 1735 [7].

As one of the first scientists, Joseph Louis Lagrange de-
scribed the idea of numerical simulations in 1759, but there
was no practical use for his idea at this time [8]. Certainly
one reason for this was that no computers existed.

In 1835 William Ferrel postulated the importance of the
Coriolis force for the weather processes [9].

Through observing the influence of an unknown planet on
the orbit of Uranus Urban Le Verrier calculated that Neptune
had to exist and he could make assumptions about its orbit
and position. When Neptune was discovered in 1848 [10],
this proved that physics and mathematics could be used to
predict the development of physical processes [8]. Le Verrier
also made another, more direct contribution to meteorology.
He developed a professional concept for weather forecasts in
1854 [11].

The breakthrough came in 1904 when Vilhelm Bjerknes
published his famous paper “Das Problem der Wettervorher-
sage: betrachtet vom Standpunkte der Mechanik und der
Physik” [12]. He combined all sciences which were needed to



conduct numerical weather predictions: meteorology, physics
and numerical mathematics.

It took another 46 years until his ideas could be charged into
practice. In 1950 scientists could implement the first weather
model on John von Neumann’s computer ENIAC [13].

IV. CONCEPT

The target of numerical weather simulations is to calculate
the state of atmosphere depending on time. That means the
simulation has the purpose to calculate the velocity, density,
pressure, temperature and humidity of every single point in
the air [12]. As it is not possible to regard every single
point because of observational and computational limitations
a two-dimensional or a three-dimensional grid is used for
approximation [14].

A. Approach

You can divide the development of numerical simulations
into several steps. First of all, you have to define and im-
plement a theoretical model of the simulation. This model
includes all necessary physical equations and approximations
[14]. In a second step you have to gather data in order to trigger
your simulation. This is a fundamental step of every numerical
simulation [12]. Eventually, you conduct new observations.
The new collected data is not only used to trigger a new
simulation, but it is also used to verify your model: “Much of
the improvement in NWP and in the statistical interpretation
system can be tracked by the verification of the weather
element guidance.” [15]

B. Physical and Mathematical Fundamentals

The fundamental necessary physical equations used in al-
most every weather model are the equations of motion and
momentum, the equations for conservation of mass and the
equation for conservation of energy, especially the first law of
thermodynamics. The effects on physical processes by oceans,
clouds and mountains (e.g. absorption of carbondioxide or
heat) are used to improve the weather models. [8,12,14]

However, the majority of these equations are partial dif-
ferential equations. Bjerkenes describes the numeric problem
as followed: “The task then consist of integrating a system
with six partial differential equations with six unknowns [...].
There can be no question of a strictly analytical integration
of the system of equations. [...] Graphical or mixed graphical
and numerical methods are required to solve the task.” [12]
Which numerical methods are used depends on the exact target
of the model and the underlying experience of the people
who implement the model. The WRF model uses Taylor
series as one method for numerical approximation [14]. The
COSMO model, an European project initialized by Deutscher
Wetterdienst [16], uses Runge-Kutta methods and the so-called
leapfrog method. Nevertheless, a variety of other numerical
methods for solving differential equations are used in practice
[14].

C. Parametrization

All physical and chemical processes which are not simu-
lated with suitable equations for any reason (e.g. complexity,
missing knowledge, smallness) are expressed by additional
parameters for the simulation [14]. Typical examples are
radiation, the effect of vegetation and soil temperature [17].

D. Data Assimilation

ECWMF uses a variety of different data sources to de-
termine the current state of atmosphere for their predictions,
amongst others satellites, aeroplanes, ships, buoys, registering
balloons and radar stations [18]. Before this data can be
used for simulations, it has to be assimilated. Present and
past observations are combined with the results of former
simulations and short range forecasts [19]. This seems to be
simple but has a strong mathematical background [20].

V. ACCURACY

It is certainly uncontroversial that weather forecasts have
become better for the last decades. This section examines
how exact computer supported weather forecasts are and how
scientists try to improve them for the future. One should
consider that weather forecasts are not only important for
normal people to decide whether they need an umbrella or
not, but they have an significant importance for shipping
traffic, air traffic, agriculture, police, fire brigade and technical
emergency services [21, p. 1].

Accuracy of weather predictions is a vague term. It depends
on the predicted phenomenons someone wants to consider. In
Japan meteorologists have to predict the opening of cherry
blossom buds for each region because Japanese celebrate this
day with big events [21, p. 3]. More general weather variables
are temperature, wind direction, wind speed, sky cover, ceiling
height, precipitation, visibility, probability of thunder storms
and snowfall amount [22].

A. Calculation

Depending on the weather variable different calculations are
needed to measure the error of numerical weather predictions.
The amount of rain has to be handled different than the
probability of rain.

1) Numerical/Continuous Variables: The error of variables
with numerical values such as the amount of rain or the air
pressure can be calculated by using the mean absolute error
(mae) or the root mean square error (rsme) [23, p. 2]:
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e; stands for the absolute error in observation number 1.
rsme has the advantage that models with many outliers are
ranked lower, so a model which always predicts the maximum
temperature with an error of 0.5°C will be ranked better than
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a model which nearly always predicts correctly, but sometimes
is wrong with an error of 5°C.

2) Dichotomous Variables: Dichotomous means that a vari-
able can have two states. One example is the forecast if it
will rain. Therefore you have to determine a threshold (e.g.
Imm/day) which separates the two events rain and no rain.
At the beginning of your verification you have to create a
so-called contingency table:

Table I
CONTINGENCY TABLE

| | Forecast
| | yes no | Total
. es hits misses observed yes
Observation | ~ .
no false alarms  correct negatives | observed no

| Total | forecast yes  forecast no | total

With this table you can calculate Bias score (BIAS) and
Equitable threat score (ETS):

hits + false alarms

BIAS = 3
hits + misses )
hits — hitS,qndom
ETS = 4
hits + misses + false alarms — hitS,qndom @)
) (hits + misses)(hits + false alarms)
hitsrandom =

total

Already its name implicates that the Bias score indicates if a
model is biased or unbiased, i.e. if it predicts an event less
often than observed (BIAS less than 0) or more often than
observed (BIAS greater than 0). ETS ranges from —% to 1
with a perfect value of 1. It considers random hits and is an
appropriate score to compare different models for different
regimes. [24]

BIAS is often used along with ETS and can be used to
improve the informative value of ETS [25].

3) Probabilistic Variables: There are several scores for
calculating a score for probabilistic variables such as the
probability of rain in percent [24]. One score, which is easy
to understand, is the Brier score (BS) [26]:

n
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“The Brier score is the mean squared error in probability
space.” [24] P; is the predicted probability and O; is either O
(not observed) or 1 (observed). It obviously ranges from O to
1 with O as the best score. An example can be seen in table

IV which is explained in section V-C.

B. Wet Bias

In order to determine the accuracy of weather predictions
one might analyse the accuracy of on-line services or TV
forecasts. What is quite unknown is that TV weathermen
make intentionally wrong predictions. They tend to predict
a higher probability of rain. This effect is called wet bias. It
is a psychological effect for the audience. If the weatherman

predicts rain and it keeps dry, people link the missing rain to
a positive feeling. However, if the weatherman predicts a low
probability of rain, but it rains, people relied on this forecast
and left their umbrellas at home, they tend to blame the
weatherman. A similar effect can be observed on predictions
of hurricanes or other natural disasters for the reason of safety.
[27]

A study showed that forecasters from “The Weather Chan-
nel”, providing weather forecasts via television in the USA
and via weather.com, tended to exaggerate the probability of
precipitation if they actually would predict a probability below
thirty or above ninety percent. A fifty percent probability was
avoided. [28]

More about reasons why forecasts in general fail can be
found in Nate Silver’s book The signal and the noise: Why so
many predictions fail-but some don’t [29].

C. Accuracy of Meteorological Services

According to the British Met Office 85.2% of minimum
temperature forecasts and 90.6% of maximum temperature
forecasts are accurate with a deviation of 2°C on the next
day. The prediction of rain on the current day succeeded with
arate of 73.3%. “[A] three-day forecast today is more accurate
than a one-day forecast in 1980.” [30]

The German Weather Service (Deutscher Wetterdienst) de-
clares that the average temperature for the next day can be
predicted with a root mean square error between 1.0°C and
1.1°C [21, p. 6]. Figure 2 shows the accuracy of the average
temperature forecast depending on the number of days ahead.
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Figure 2. Root Mean Square Error of Average Temperature Predictions

(Adapted from [21, p. 6])

Table 11
ACCURACY OF 24 HOURS PREDICTIONS IN 04/15 (DATA FROM [32])

Meteo. Agency ECMWF JMA NCEP
Mean sea-level pressure (hPa)  0.79 1.07 1.05
850 hPa temperature (K) 0.68 0.79 1.07

Table II summarizes the root mean square error of three
leading meteorological agencies for a 24 hours prediction:
The European Centre for Medium-Range Weather Forecasts
(ECMWEF), the Japan Meteorological Agency (JMA) and the



Table III
ACCURACY OF 264 HOURS PREDICTIONS IN 04/15 (DATA FROM [32])

Meteo. Agency ECMWF JMA  NCEP
Mean sea-level pressure (hPa)  7.19 7.76 7.59
850 hPa temperature (K) 3.82 3.64 4.05

National Centers for Environmental Prediction (NCEP) from
the USA. In a height of 850 hPa ECMWF could predict the
temperature with a root mean square error of only 0.68°C.

The ISO standard atmosphere has a mean sea-level pressure
of 1013.25 hPa [31]. Sea-level pressure could be predicted best
by ECMWF with a root mean square error of 0.79 hPa. [32]
Table III encapsulates the same data for a 360 hours prediction.
Both data sets are valid for the northern hemisphere without
the tropical zone (20°N - 90°N).

Table IV shows the Brier scores of several American
weather forecast providers predicting the probability of precip-
itation for the next day. You can interpret the Brier score of a
single forecaster as the probability of a wrong event prediction.
The lower the Brier score the better. Section V-A3 describes
how the Brier score is calculated.

Table IV

BRIER SCORES OF ONE-DAY PROBABILITY OF PRECIPITATION
FORECASTS IN 2012/2013 (ADAPTED FROM [33])

Rank  Provider Brier Score
1 Schneider Electric 0.1115
2 Weather Underground 0.1209
3 CustomWeather 0.1217
4 National Weather Service 0.1242
5 The Weather Channel 0.1315

D. Enhancement by Model Output Statistics

Model Output Statistics is a regression method “for a nu-
merical weather prediction model, statistical relations between
model-forecast variables and observed weather variables, used
for either correction of model-forecast variables or prediction
of variables not explicitly forecast by the model.” [34]

MOS compensates the low resolution of numerical weather
simulations. Even high resolution regional NWP systems in
current research have a horizontal resolution between two and
five kilometres with the ability to simulate about 50 to 60
vertical layers up to about twenty kilometres [35]. In general,
operational NWP systems have a horizontal grid resolution
between ten and one hundred kilometres [36].

By using statistical data MOS corrects the output of NWP
simulations and gives a sensible form to the output if the model
itself frequently makes wrong predictions [37,38].

Furthermore MOS helps to interpret the output of NWP
simulations. For example when the model predicts a certain
relative humidity the statistical data can derive a value for rain
probability [39].

E. Limitations

There are three main factors producing errors in NWP:

1) Erroneous or Insufficient Input Data: Every numerical
simulation needs a set of input data to describe the initial state.
The more data is provided the better. To enable the perfect
numerical weather prediction one would have to measure the
temperature, pressure etcetera of every single point of the
air which is obviously impossible. Additionally, errors in the
measurement, made by humans or caused by technical reasons,
make every simulation imprecise.

According to [40] “[...] new (and accurate) observing sys-
tems, which measure the variables we need under all weather
conditions, are the best way to improve NWP forecasts.
Improvements in computers (which may allow higher hori-
zontal and vertical resolution) and in the parameterizations of
physical processes within the models will help, but to a lesser
degree than new observing systems.”

2) Errors in the Model: A model is “[a] simplified descrip-
tion, especially a mathematical one, of a system or process,
to assist calculations and predictions” [41], which means that
every model has some deficits. As described in IV-B NWP
needs numerical approximations, so every NWP is imprecise
through its concept. Another reason for errors in the model is
the lack of understanding in weather processes [12].

One should also consider that models are implemented as
a kind of software. This is why bugs play also a role when
models fail in their prediction.

3) Bufferfly Effect: In 1963 Edward N. Lorenz described
the fact that very small modifications of the initial conditions
can lead to totally different solutions in numerical weather
prediction [42]. To compensate this Butterfly effect ECMWF
runs several parallel forecasts with slightly different initial
parameters [19]. This technique is called multi-analysis en-
semble. Another approach is the multi-model ensemble where
different models share the same input data. [17]

VI. CONCLUSION

The wish to predict the weather is very old, as seen in
section III, and is still present. A tremendous improvement
of forecast accuracy has been showed in section V. Further
improvements in meteorology, more statistical data, better
observations and access to higher computational power will
lead to even better forecasts in the future.

Future research will deal with hard to predict phenomenons
like thunderstorms [43]. Nowadays, uncertainty is and prob-
ably will be an accepted variable in numerical weather pre-
diction. Weather forecasts are a good example that nobody
can predict the future. However, weather forecasts prove that
meteorologists can at least make good assumptions about the
future.
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