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A B S T R A C T

The Baxter research robot has due to its orientation towards soft
robotics potential application areas in Human Robot Interaction as
well as in the industry. To evaluate the pros and cons in these appli-
cation areas, a rapid prototyping demo scenarios is useful. However,
the research robot’s API provides only access to the hardware with-
out offering high level abstractions.

Consequently, developing of demo scenarios repeatedly includes
the implementation of common features like motion planning, ma-
nipulation or object perception. While a rewriting of these software
parts might be beneficial for specialized applications, it hinders rapid
prototyping aiming for evaluating hypotheses with minimum pro-
gramming effort.

We introduce in this thesis a rapid prototyping framework for the
Baxter robot. It accelerates demo development by providing core func-
tionalities for motion planing, perception and Human Robot Interac-
tion tasks. This allows faster evaluation of hypotheses in human robot
interaction research or faster industry prototyping.

As a result, researchers and developers can focus on their hypoth-
esis and using the Baxter robot for rapid prototyping becomes faster
and less error-prone.
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Z U S A M M E N FA S S U N G

Das Einsatzgebiet des Baxter Roboters liegt in der Mensch-Roboter
Forschung und in der Industrie. Um die Vor- und Nachteile dieses
neuartigen Roboters in den verschiedenen Feldern zu finden ist De-
moprogrammentwicklung durch Rapid Prototyping nützlich. Allerd-
ings bietet die Forschungsversion des Roboters lediglich hardware-
nahe Programmiermöglichkeiten . Aufgrund dessen werden typische
Programmbestandteile wie die Planung von Bewegung, die Objekt-
manipulation oder die Wahrnehmung oftmals wiederholt implemen-
tiert. Während dies für spezialisierte Produktivsoftware nützlich sein
kann, ist es hinderlich für eine schnelle Evaluation von Hypothesen
mit minimalem Programmieraufwand.

Wir stellen in dieser Thesis ein Rapid Prototyping Framework für
den Baxter Roboter vor das dieses Problem adressiert. Es beschleunigt
die Entwicklung von Demoscenarios zur Evaluation von Hypothesen
durch das Bereitstellen von Kernfunktionen wie die Planung von Be-
wegung, Wahrnehmung oder Mensch-Roboter Interaktion. Dies er-
laubt schnelleres Prototyping für Industrie und Forschung.

Im Ergebnis können sich Forscher und Entwickler mithilfe dieses
Frameworks auf ihre Hypothesenevaluation konzentrieren da die Nutz-
ung des Baxter Roboters weniger fehleranfällig und schneller wird.
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1
I N T R O D U C T I O N

The idea of artificial life forms is very old. It is already present in an-
cient mythology, for example, in the Jewish legends of the manmade
clay golems or in the Greek legends around the mechanical servants
made by the god Hephaestus. In these ancient stories, the artificial
life forms often act as a servant for their constructor. They interact
with them, obey orders, or work side by side with people. In mod-
ern literature the term robot is often used for such a life form. First
used in 1921 in the play Rossum’s Universal Robots by the Czech writer
Karel Čapek [8] it fast gained popularity through various other stories
like Isaac Asimovs Nighfall. In these stories robots are reintegrated into
human society and work as servants together with us.

However, the modern development of robots has taken another
path. Starting in the 1960s, robots were introduced into various indus-
tries as relatively simple autonomous helpers , for example the Uni-
mate robot that revolutionized General Motors’ production line[27, pp.
79]. They spread quickly because of their advantages in cost and per-
formance compared to a human worker. This mass distribution led
to more sophisticated robots with specialized capabilities in many in-
dustries. However, unlike imagined in literature, modern robots are
rarely able to work co-located to humans or to communicate with
them. They are often not built for this purpose and are too dangerous
because of their focus on specialized working performance. In other
words, they trade working speed for safety. In addition, most indus-
try robots are rarely adaptable to tasks other those they were built
for, making them inadequate to be used in a company that changes
its production quickly [19, pp. 9-13].

This development in robotics has led to a hesitant integration of
automation in many fields. We do not have the automated servants
as imagined in literature yet. Even though researchers in the field of
Human-Robot Interaction (HRI) are working hard on this vision, the
realization of it is still far away. However, there are niches for new
ideas between the use of a robot as a personal servant at home and
the now existing industry robots.

Rethink Robotics1 targets one of these niches with their in 2013 re-
leased Baxter robot. It aims to be the missing link between a heav-
ily specialized and dangerous industry robot and a comparatively
slow and expensive human worker. This means that it is safe to work
among humans through newly developed safety concepts and it is
more adaptable to abstract tasks.

1 http://www.rethinkrobotics.com
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2 introduction

While Rethink Robotics tries to find places for the robot as a com-
mercial product, they also offer a research version of it. This version
comes without the commercial software and is freely programmable.

1.1 motivation

The Baxter robot is an exciting research platform thanks to its new ap-
proach towards more co-located work and a more adaptable system.
Besides this, it promises a good cost effectiveness making it interest-
ing for middle scale industries. As a result the Alberta Centre for
Advanced MNT Products (acamp)2 has purchased two Baxter research
robots as the use cases of the robot fit into their business model to
bring the Alberta industry forward through innovative techniques.
To explore the capabilities of the robots, acamp collaborates with the
University of Calgary by providing it with one robot.

The motivation for this project stems from the different visions of
the two project partners. The uTouch3 research group of the University
of Calgary aims to explore the HRI capabilities of the Baxter robot in
various studies. Due to the robot’s safety features, its physical dimen-
sions and its humanoid appearance it is an ideal candidate for HRI

research studies like finding out what makes such a robot acceptable
as a co-worker and the effects different collaboration behaviors have
on humans.

On the other hand, acamp would like to explore the opportunities
and limits that come with a Baxter robot as an industrial tool. While
the commercial manufacturing version already shows some capabili-
ties of the hardware, it is primary made for trainable tasks that only
deal with a minimum of randomness. However, different industries
in Alberta could have different use cases that cannot be realized with
this manufacturing version. To introduce the Baxter robot to such
companies acamp would like to have custom demos showing the capa-
bilities of the robot besides the manufacturing version.

With these visions in mind both project partners are aware of the
novelty of the robotic platform. Hence, this project is merely the start
of working on these visions and does not aim to complete the differ-
ent requirements arising from it. It rather shall form a good base for
further work, give a first overview of the platform and provide the
fundamental knowledge needed to understand the limitations of the
Baxter robot. Thus, unifying these goals, the outcome of this project
will be comprised in a framework that allows the use of the core
capabilities of Baxter for a rapid prototyping of demo scenarios. The
evaluation of this framework is done by building demo scenarios that
operate with Lego Duplo4 blocks. We focus on Lego because they are

2 http://www.acamp.ca

3 http://utouch.cpsc.ucalgary.ca

4 in the following, just Lego for simplicity in this thesis
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a good abstraction mechanism for industry tasks as many tasks like
constructing or sorting are transferable to similar industry tasks. This
framework can then be used as a base for the exploration of HRI chal-
lenges and the industry challenges in subsequent projects.

1.2 results

This thesis encompasses three different outcomes:

1. We gained knowledge about the platform and what is achiev-
able with it and what not. This is useful to manage the time con-
straints, scope and expectations of future projects. This knowl-
edge is documented in this thesis. While the discovered capa-
bilities are especially discussed in Section 2.4 the restrictions of
the platform are mainly discussed in Section 5.1. We discovered
for example restrictions regarding sample-based motion plan-
ning and the parallel arm usage, or restrictions that apply to
the general object recognition with the hands.

2. We developed an easy to use rapid prototyping software frame-
work in this thesis allowing less error-prone and faster prototyp-
ing. This framework is intended to speed up further project’s de-
velopment through an easy to use Application Programming In-
terface encapsulating low-level task to make them easily reusable.
It includes abstractions for features like collision aware move-
ment, sequential multi-arm usage, picking, placing, object search
as well as recognition and basic Human-Robot Interaction. The
framework’s design is focused on faster development of proto-
types rather than complexity and advanced capabilities used in
production ready releases.

3. We developed demo scenarios showing the capabilities of the
framework. In these demo scenarios, the Baxter robot sorts mul-
tiple randomly distributed Lego pieces. The whole movement
of the robot is collision aware. The implemented demos can op-
erate on one or both arms showing the adaptability of the frame-
work through the development of a simple first demo (one arm)
to a more sophisticated second demo (two arms).

These three outcomes found the base for a successful implementa-
tion of further Baxter robot projects in the uTouch research group.

1.3 organization

This thesis is structured as follows:
Chapter 2 encompasses the analysis of the problem domain
and the inferred challenges for this thesis. Furthermore, it in-
troduces general theoretical approaches to solve these chal-
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lenges and familiarizes the reader with the Baxter robot. Fi-
nally, it introduces the reader to the framework design prin-
ciples followed in this thesis.

Chapter 3 describes important libraries and underlying con-
cepts. Most importantly, it introduces the reader to the Robot
Operating System as it is the base for all development re-
lated to the Baxter robot. Besides robotic related concepts
it also explains essential software design concepts that are
used later.

Chapter 4 illustrates the software architecture developed to
implement the analyzed features. The architecture is explain-
ed in detail using the Unified Modeling Language to formal-
ize the concept and its collaborators. Furthermore, the Robot
Operating System’s specific project structure and the result-
ing separation of the features is explained.

Chapter 5 covers specific details of our work. It does not
provide a complete explanation of every specific detail, but
rather focuses on certain examples that are representative
for the problem classes that were solved in this thesis. The
described problems differ from each other and highlight key
aspects of problems that arose multiple times during the im-
plementation.

Chapter 6 makes the reader familiar with the related work
by looking at related published papers and briefly summa-
rizing them. It also provides an overview about the projects
that were published outside academia on YouTube and in the
blogosphere. Finally, the distinctive qualities of this thesis are
highlighted.

Chapter 7 discusses the final result of the thesis with fo-
cus on quantitative and qualitative results. It provides per-
formance measurements showing the speed and reliability
increase compared to naive implementations of features and
discusses the demo perception of viewers.

Chapter 8 points out opportunities and challenges that are
well suited for further projects with the framework and the
Baxter robot. It presents a subsequent project idea that intro-
duces the robot into a real industry scenario.



2
A N A LY S I S

2.1 introduction to the baxter robot

Figure 1: The Baxter robot

The Baxter robot is a new robotic platform introduced by Rethink
Robotics in 2013. It is a still standing humanoid robot with two arms
for manipulation and a movable head (see Figure 1). The company
breaks fresh ground with this robot as it distinguishes itself in var-
ious ways from standard industry robots. Most importantly, it is in-
tended to work in a different application domain than normal indus-
try robots.

While industry robots are supposed to work in an environment
built for their needs separated from humans, the Baxter robot will
work co-located to humans or even hand in hand with humans. To
realize this concept Rethink Robotics has implemented a new safety
concept in the robot guaranteeing that the robot is completely harm-
less for humans. The robot stops automatically, for example, when-

5



6 analysis

Figure 2: The layout of the end effector

ever it hits something with too much force [26]. Another important
approach Rethink Robotics pursues is the ability to solve many dif-
ferent tasks with the robot rather than one specialized task like a
standard industry robot.

To do so, the robot is equipped with various sensors and actua-
tors. It has two seven Degree Of Freedom (DOF) arms with an arm
length of 1m each. Thus, every arm is controlled by seven servos (see
Section 2.4.1). At the end of each arm there is a mounting point for
different types of end effectors. Rethink Robotics provides an electri-
cal parallel gripper (see Figure 2) with exchangeable fingers and a
vacuum cup end effector as default. Furthermore, the specifications
for the end effector connectors are published and other end effectors
are available [33].

The robot can carry 2.3 kg payload per arm and has a maximum
movement speed of 1 m

s on each empty arm and 0.6 m
s on each loaded

arm. While this is slow compared to a heavily specialized industry
robot, it is sufficient for most abstract tasks that need to be solved at
an assembly line.

For sensing the robot has three cameras: one at each hand and one
on the head with a maximum resolution of 1280x1024 pixels. In addi-
tion, the hands also include an Infrared Rangefinder and, depending
on the gripper, a pressure sensor. The head encompasses a screen
with a resolution of 1024x600 pixels as well as a sonarring for sensing
a 3D point cloud and is movable along the sides and can nod. Each
arm can detect acceleration, velocity, linear twist and the force cur-
rently effecting it. For input and output the robot has various buttons
on its chest and arms as well as several lights on its arms, chest and
head.

Rethink Robotics delivers the robot in two different ver-
sions. The first version is a manufacturing version that comes
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with commercial software and is able to perform a vari-
ety of tasks after training the robot by demonstration [26].
The training is based on the ability to move the robot’s
arms freely when the cuff buttons are pressed (see Figure 3).

Figure 3: The capacitive cuff buttons
enabling the zero-G mode

This triggers the training mode,
allowing the user to teach the
robot an action by showing
arm trajectories and select-
ing actions from an interface
displayed on the head. Such
actions are, for example, to pick
from the location the hand is
currently over or to repeat the
movement just showed.
The other version Rethink
Robotics offers is the research
version used in this project.
Lacking Rethink Robotics’ com-
mercial software it is not ready

y to be used immediately, like the manufacturing version and misses
the training mode. However, it is freely programmable and has a
Python and C++ Application Programming Interface (API) exposing
complete control over the robot.

2.2 methodology

We have chosen an iterative approach for the project. This decision
was based on our missing experience with the platform and resulted
from the vague requirements the project partners had at the start
of the project. Due to these vague requirements, only these features
important to the overall vision must be considered.

Iterative approaches are very common in software development
and research as they are designed to deal with a high level of uncer-
tainty. One of the very first iterative models in software development
was the Spiral Model [6]. It states that iterative development is risk-
driven. This means the risk determines the level of detail and effort
that should be spent in each cycle. In contrast to a low risk cycle, a
high risk cycle may include fewer distinctive work items that, how-
ever, require a high degree of analysis. Work items are, for example,
library evaluation or programming a feature. In addition, the Spiral
Model defines risk evaluation as a key task in each cycle. So it is im-
portant to manage the expectations of the stakeholders and to adapt
the project based on their needs.

Our model implemented these risk reduction features through the
following tasks. First, bi-weekly status reports were part of every iter-
ation, keeping the stakeholder in the information loop with the ability
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to provide feedback. They also contained a detailed list of the pro-
posed, remaining and finished work items of each iteration. Second,
milestones were planned at the beginning of the project defining the
dates when the current state of the project needs to be shown to the
public. Hence, possible demo scenarios could be evaluated and imple-
mented timely before the actual demo. Third, monthly project meet-
ings were held to show the overall project progress, to manage the
expectations of the stakeholders and to allow an exchange of ideas
and suggestions. Based on this, a concrete iteration of our process
normally comprised the following steps:

1. Explore the most basic feature that is important for the stake-
holders

2. Implement the feature into the framework

3. Demonstrate the newly integrated feature in the monthly meet-
ing

Sometimes an iteration included more than one feature and some-
times two iterations were needed to release a new demonstration.

2.3 workspace

To show the abilities of the robot we thought about a task that is
both familiar and entertaining for the viewer. In addition, as the
robot has weight and movement speed restrictions, the task should
be lightweight and doable in a reasonable amount of time. Therefore,
our Baxter robot performs its demo tasks with Lego on a table (see
Figure 4).

While it might not seem reasonable in the first place to perform
such a task when the project vision is an industry usage of the robot,
working with Lego pieces is closely related to many industry tasks
due to similar spatial challenges. Consequently, motion, object recog-
nition and manipulation tasks that can be demonstrated with a Lego
piece can be transferred to an industry related task as long as the
physical constraints like weight restrictions remain similar. For ex-
ample, sorting Lego pieces can be transferred to the corresponding
industry task of sorting or categorizing manufactured parts by color
or quality.

2.4 feature analysis

The following features were found during the iterations of the project.
Each feature was refined in multiple iterations to its final stage of
expansion. The different parts of the features were first explored and
introduced in the framework in the following order:
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Figure 4: Our Baxter robot on its workplace in the laboratory

1. Movement through Inverse Kinematics (IK)

2. Motion planning (collision aware)

3. Multi-arm motion planning

4. Robotic perception

5. Robotic manipulation

6. Human-Robot Interaction

The analysis below shows each features challenges and their theo-
retical solution.

2.4.1 Arm movement

The arms are the only parts of the Baxter robot that are suitable for
manipulating objects. As a result, arm movement might be consid-
ered as the robot’s most important functionality.

Arm movement is a spatial function operating in all three dimen-
sions. It is also a physical operation and therefore restricted by hard-
ware constraints. Typically the hardware underlies position, velocity
and acceleration constraints. In our Baxter robot, for example, every
joint has a maximum velocity of 1 m

s and is either a revolute joint or
a prismatic joint with a minimum and maximum position. A revolute
joint has one DOF and moves rotational(see Figure 5b). A prismatic
joint has also one DOF and moves straight along a certain axis (see
Figure 5a).
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(a) Prismatic Joint 1 (b) Revolute Joint 2

Figure 5: Different types of robotic joints

Since each arm consists of a chain of revolute and prismatic joints
connected by rigid bodies called links (see Figure 7), we have to spec-
ify the position of each of these joints when we want to move the
arm to a certain position. Such an arm position is described as an
arm configuration Q. The configuration Q of the arm is defined as
Q = (q1,q2,q3, ...,q7) where qi specifies the position of the joint i.
Moving Baxter’s arm, for example, to an object that is relative to the
robot at position x = 0.3m,y = 0.2m, z = 0.5m would require to
specify an arm configuration Q that corresponds to this position.

In robotics this problem and its solutions are summarized under
the term IK. An IK-Solver is a program that calculates the arm config-
uration Q given a pose p = (x,y, z,α,β,γ) for the end effector link.
While the coordinates x,y, z are the usual spatial translation as we
intuitively use it and α,β,γ are the rotation angles of the end effector
(see Figure 6) in degrees.

Figure 6: The rotation axis of the arm

The way the IK-Solver finds
the solution varies depending
on the robot and the IK-Solver
used. Common methods are ei-
ther analytical, geometrical or
numerical and depend on the
properties of the robot.

An IK-Solver enables us to
find the desired joint values
for a pose p. However, another
problem remains. Setting the
joint values for the arm causes
every joint to move into the
specified position ignoring pos-
sible collisions due to the exe-
cuted trajectory.

1 Prismatic joint by Jameson L. Tai talk Licensed under CC BY-SA via Wikimedia
Commons

2 Revolute joint. Licensed under PD via Wikimedia Commons
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Figure 7: The different joint types in the kinematic chain, all joints are
marked by an arrow. Only the gripper joints are prismatic.

Collisions can occur even when the reason is not immediately
evident. Imagine for illustration an arm configuration with only two
joints (see Figure 8). We have the end effector link close to an obstacle

(a) Start position (b) End position

Figure 8: A motion that leads to a collision when solved with an IK-Solver

facing upwards. All we try to do is to move the end effector to a
new pose facing down. An IK-Solver calculates the new position for
each joint. The joint connecting robot and arm remains in the same
position while the joint connecting arm and end effector moves. As
a result there is a collision between end effector and wall during the
motion even though start and goal pose are collision free.

A Motion Planner addresses this problem. Motion planning is the
process of finding a trajectory between one pose and another with-
out violating movement constraints [30]. The constraints given vary
depending on the aim of the movement. The example above deals
with collision constraints. Further constraints are, for instance, orien-
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tation constraints like always moving a glass of water with the open-
ing pointing upwards or path constraints like moving from start pose
to goal pose in a straight line.

The algorithms used in motion planning for high DOF problems are
usually sample-based. The general steps applied by different sample-
based algorithms when planning a way from pose pstart to pend are
listed below. Inhere, C is the set of all possible arm configurations
and Cfree is the set of all arm configurations that are not in collision
with the environment [30].

1. Sample a set S ⊆ C arm configurations

2. Retain all Qi,Qj ∈ S∩Cfree

3. Create a graph that connects Qi,Qj if the whole way between
Qi and Qj is collision free.

The algorithm can now find a collision-free trajectory between
pstart and pend if the constructed graph allows for a way between
pstart and pend. In contrast, not finding a way between Pstart and
Pend does not prove that no such way exists as the planner might
not have sampled enough milestones to find the path (see Figure 9).
In such a case running the algorithm multiple times might increases
the chances to find a trajectory as the sample-based algorithms
converge against a solution if it exists and unlimited time is spent.
However, after multiple tries without a solution it is probable but not
guaranteed that no trajectory between pstart and pend exists and we
have to choose another endpoint.

2.4.2 Multi-arm coordination

The discussed basic movement (see Section 2.4.1) is sufficient for op-
erating one arm. However, it is beneficial most of the time to use
both arms together as the combination of both arms leads to a larger
workspace, a higher working speed and the ability to solve more so-
phisticated tasks.

Although dual arm movement leads to advantages, it introduces
two new challenges to motion planning. First, the algorithms for mo-
tion planning are primarily designed for single-arm operation. When
it comes to multi-arm planning, the collision checking needs to per-
form additional computations. It is then possible, that the arms col-
lide or get in the way of each other during the execution of the mo-
tion. While these additional checks are implemented in most sample-
based motion planning algorithms, the resulting trajectories are cum-
bersome and the planning time increases drastically (see Section 5.1).
Consequently, the robot only operates sequential in multi-arm mode
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(a) Too few configurations sampled

(b) Valid plan due to the additional configurations sampled

Figure 9: Sample-based motion planning from start (circle) to goal (cross)

during this project. Second, even if the arms move sequentially reduc-
ing the complexity for the motion planner, they can still obstruct each
other’s way. An example situation would involve the following steps:

1. Both arms are in not obstructing positions

2. The left arm picks a Lego piece from the table and places it in a
box standing in the middle of the table and remains there

3. Control of the arms switches: the right arm picks a Lego piece
from the table

4. The right arm’s placing path is now obstructed by the left arm
that is still over the box

The solutions for this heavily depend on the exact task performed
by the robot. One approach is to define working areas for each arm
and a shared working area (see Figure 10). The non-shared areas can
only be used by the corresponding arm. If an arm is in the shared area
before it hands the control over to the other arm, it first has to leave
the shared area and move into its non-shared area. This guarantees
that the next movement will always happen in a state where the arms
cannot obstruct each other. This is a better solution than to move the
arms into a neutral position after every move. It requires in general
only an additional move if an arm switches control while being in the
shared area.
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Right Arm Area
Right Arm AreaLeft Arm m Area Shared Area

Table

Figure 10: Partition of the table working area in the multi-arm approach

2.4.3 Perception

Perception is the second most important ability of the Baxter robot.
While it is indeed possible to solve some basic tasks completely by
repetitive movement without perception, a good perception is essen-
tial for any task that involves interaction with a changing environ-
ment. In such an environment the robot needs to perceive changes
and react to them, for instance, an adjustment of the arm pose when
trying to grasp a randomly distributed Lego piece.

Therefore the Baxter robot is equipped with many sensors as de-
scribed in Section 2.1. However, an effective work with some of these
sensors requires effort, as the sensor data needs additional process-
ing before it is usable. An exception are the sensors located directly
in the arm reporting acceleration, velocity, pressure, twist and force.
This data is directly usable and in physical standard format.

Camera, IR-Sensor and sonar ring depend on preprocessing, as the
raw sensor data lacks structure and semantics. We focus on the cam-
era as we do not use the other two sensors in our current project.

The raw data structure of an image is nothing more than a large
matrix containing a color information in each cell. Consequently, pro-
cessing the data aims first for a better structuring of the raw data. The
usual approach for the structuring of image data is image segmenta-
tion. Its intention is to create meaningful pixel groups based on the
pixel matrix described above.

Meaningful groups encompass pixels that belong to the same real
world object, edge or boundary. By finding such groups the image
structure becomes clearer. Thereafter, feature extraction and pattern
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recognition methods are usually used to map the visual representa-
tion to a real world object providing us with semantic value.

Although these algorithms enable us to identify objects on a camera
stream, we still miss any spatial information about the object. This
means that the robot is not able to interact with the object because
its coordinates are unknown. Inferring spatial information from an
image requires a transformation from 2D space into 3D space as the
image is missing depth information. Such a transformation can be
based on different methods, common methods are:

• Transformation through a known object size

• Transformation through a known distance between camera and
object

These two methods have in common that they need to consider
parameters like lens distortion or dots per inch of the camera.

After applying one of these transformation methods we have suc-
cessfully processed the raw camera data to more meaningful and use-
ful data that is suitable for planning and moving the arm to an object.

However, a spatial estimation of an object’s pose extracted through
image processing techniques is inevitably inaccurate because of the
limited resolution, changing illumination properties or numerical
rounding errors. For the same reasons, there is always a probability
of false positive recognition, for instance, because some glare in the
background resembles the same shape or features as a recognizable
object.

2.4.4 Manipulation

Manipulation is the ability of the robot to interact physically with an
object in its environment. The common manipulation tasks we focus
on are picking and placing. All manipulation tasks are based on the
movement capabilities of the robot. Furthermore, most manipulation
tasks also need perception abilities as they rely on object recogni-
tion and feedback loops, such as if the robotic hand has successfully
gripped something or not.

While manipulation tasks like picking a Lego piece from a table
are considered simple by most humans, they encompass several com-
plex stages and involve a permanent synchronization between hand
and vision. Transferring such an ability on a Baxter robot raises the
following challenges:

1. How to refine the pose of the object for accurate grasp planning

2. How to calculate a suitable grasp for the object
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and distance to the object
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(b) Good camera position after mo-
tion of the arm

Figure 11: Changing the camera position

3. How to check if we picked the object successfully

The first challenge involves synchronization between motion
and perception as the Baxter robot perceives a large part of its
environment with its hands. Since a shorter distance between object
and camera leads usually to a better pose estimation, the arm has to
move to the newest information provided by perception. That the
shorter distance leads usually to better pose estimation is evident
from the parameters that influence the object recognition. Moving
closer leads to a larger object in the camera frame and therefore to a
better resolution of the object. A clever move can also improve the
camera angle (see Figure 11).

(a) Bad approach, grip-
per angle does not
match Lego piece ori-
entation

(b) Bad approach, gripper
targets the long side of
the Lego piece

(c) Good approach

Figure 12: Different grasping approaches

As the second challenge involves grasp planning, we need to define
a grasp first. The term grasp as used here refers to a complex com-
pound motion that comprises a pre-grasp stage, a grasp stage and a
post-grasp stage. We base this definition closely on the technical defi-
nition [29][section planning pipeline] to simplify later understanding
for the reader. The pre-grasp stage defines the desired minimal dis-
tance between object and end effector before the grasping starts as
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well as the desired approaching trajectory leading to the grasp stage.
The grasp stage defines the pose the arm needs to reach right before
the end effector closes, the maximal contact force between end effec-
tor and object, and the required velocity for the closing of the end
effector. Finally, the post-grasp stage defines the retreat direction and
distance of the end effector after the grasp stage.

While the arm executes a grasp, it traverses these three stages. The
calculation of a suitable grasp therefore involves the calculation of all
parameters needed in the stages. While pre-grasp minimal distance
and post-grasp retreat are almost arbitrary in the Lego picking ex-
ample, and therefore easy to choose, the other parameters require
calculation. The grasp stage pose needs to reflect the orientation of
the Lego piece and to exclude the underlying table surface from colli-
sion planning during grasp stage. The exclusion is in effect during the
translation between pre-grasp and grasp stage and allows the robot
to slightly touch the table. The most promising end effector poses
pick the piece either from above or from the small side of the piece
(see Figure 12).

(a) Pre-grasp stage (b) Grasp stage (c) Retreat stage

Figure 13: Grasp stages

Hence, depending on the grasp stage pose, approach and retreat
should either happen only over the z-Axis or over a combination of
the z-Axis and the Axis the small side of the Lego piece is parallel
to. The end effector moves in a straight declining trajectory along
the defined approach (see Figure 13). After the object is between the
fingers of the end effector, closing it requires only the control of a
single prismatic joint, as one finger of the parallel gripper mirrors the
other.
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The last stage is to check the successfulness of a pick. A pick is
successful when the arm executes the complete motion and the end
effector is gripping the element. Controlling this is simple because
the robots end effector provides us with a sensor that reports if it is
holding something or not. However, a failed attempt can result from
two general reasons.

First, as perception is imperfect, the robot might estimate the pose
of the object incorrectly resulting in a missed pick. Second, as the
grasping is a compound move an occurrence of movement failures
like missing IK solutions or non-collision free paths (see Section 2.4.1)
is possible.

Each of these errors is handled differently. A missed grasp leads to
a new attempt after locating the object on the table again. A failure
during the grasp motion because of a non-collision free path might
be solved through another try allowing the motion planner to sample
other milestones or needs an adjustment of the grasp stage pose. A
failure due to the IK-Solver always needs an adjustment of the grasp
stage pose as the specified pose cannot be reached by the robot.

A place action is very similar to pick action. During the action the
robot traverses the same stages as during a pick. We therefore spare
the detailed description of the place action. However, it is possible to
add additional constraints during placing as it is during picking. A
typical movement constraint is, for example, to keep the placed object
in a specific orientation during the whole action, like a knife facing
away from a human or a glass of water always upright.

2.4.5 Human Robot Interaction

As said before, HRI is an interdisciplinary research field that focus on
the interaction between humans and robots. It encompasses several
disciplines like robotics, computer science, artificial intelligence or so-
cial sciences.
The Baxter robot is, through its safety features, a promising platform
for HRI research and shall be used in future projects to conduct re-
search studies in this field. Therefore, HRI primitives need to be part
of our framework. In addition, all features analyzed before are of-
ten used in the presence of humans as the typical use case of Baxter
is the intersection between humans and industry robots. That being
said, these features need to be human understandable to improve the
acceptance of the robot among its human coworkers. A robot not ful-
filling human expectations will often be perceived more dangerous by
its co-workers decreasing the acceptance to work co-located to it [12].
An example for this is moving the right arm while looking left.

The basic HRI primitives considered in this project are head move-
ment and facial expressions. The head movement of the robot is lim-
ited to horizontal movement and nodding. That is why the robot is
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Figure 14: The uncanny valley

not capable of head gestures like tilting and or shrugging. However,
nodding the head is possible expressing agreement and shaking the
head is possible expressing discomfort or refusal. Furthermore, the
head movement can make the arm movement more appealing for hu-
mans to watch. Letting the head face to the point where the arm is
going to move signalizes a viewer what is happening next.

Facial expressions are the main nonverbal communication channel
for humans. They can express many emotions like joy, excitement,
stress or discomfort. How facial expressions cause the impression of
a feeling in us is a heavily researched area. However, it is certain
that our facial muscles and the key components of our face like eyes,
mouth, nose and eyelids play a leading role to the different percep-
tions of facial expressions. Transferring this complex expression sys-
tem to a robotic face is difficult even though promising prototypes
exist [5]. However, these prototypes work with a physical 3D model
of a face miming the face structure as opposite to the face of a Baxter
robot that needs to be displayed on the screen. In addition, highly de-
tailed faces have the tendency to be perceived as part of the uncanny
valley. The uncanny valley [20] is a concept describing the paradox
that more natural models of figures or faces decrease the comfort
level of viewers than total artificial models of figures or faces (see Fig-
ure 14). In other words, a face that almost but not completely looks
like a human face is less comfortable for viewers than a face that
looks totally artificial. Such a face lies in the uncanny valley. Faces
right of the valley are more comfortable although they are more ar-
tificial, faces left of the valley are more comfortable because they are
close enough to be perceived as actual human faces.

As a consequence of the uncanny valley and the simple screen in
contrast to a physical model of a face the usage of a high detailed
face on a Baxter robot seems to be the wrong approach in our eyes.
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Recent studies show that artificial faces can also convey the right
emotions as long as they comprise some of the main features of a
face like eyes, mouth or nose [10]. This seems intuitive as we us
emoticons in our daily life to express feelings. This lead us to the
decision to use a simple artificial smiley face during this project that
can easily be upgraded to a more detailed face in future projects. An
additional advantage is that we are able to print further information
below the face giving our viewers more information about the state
the robot is currently in.

2.5 framework design fundamentals

As a consequence of the further usage scenarios for the Baxter robot
envisioned by the project partners (see Section 1.1) we focus on the
design of an object-oriented software framework for rapid prototyping. We
use the term framework as described in [11] and first defined in [9].

’’A framework is a set of cooperating classes that make up
a reusable design for a specific class of software [11].”

This definition makes clear that we mean an object oriented frame-
work as it states explicitly the usage of classes as part of the
framework. In addition, it defines that a framework is only reusable
for a specific class of software. This specific class of software is in our
case software that supports Rapid Prototyping for the Baxter robot.

Rapid Prototyping is a term first used in construction for describing
the process of quickly fabricating a model of a physical part. These
models are usually based on 3D data and are produced by sending
this data, for example, to a 3D printer or a CNC machine. The ad-
vantage of such models is that they provide a direct haptic feedback
and the ability to quickly and cheaply evaluate the pros and cons
of the physical part. Rapid prototyping is nowadays also used as a
term in software engineering to describe similar approaches that also
focus on the fast evaluation of prototypes in software development.
While there are whole methodologies transferring rapid prototyping
to software engineering like [13], we refer to Rapid Prototyping
as the ability to develop prototypes to show core functionality
quickly, ignoring the methodological aspects because we use the
methodology described in Section 2.2 . This means especially that
these prototypes are constructed to demonstrate a main idea without
solving every other problem related to it, as opposite to a commercial
product having the goal to solve every corner case it might encounter.
In other words, our framework provides the users with the ability to
rapidly evaluate ideas without worrying about low-level details.
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Figure 15: An example for a State Machine

Since the framework shall be the base for Rapid Prototyping ap-
proaches in future projects, it ideally encapsulates all low-level func-
tionality into a good API. A good API is hereby characterized by the
following items [4]:

• Easy to learn

• Easy to use, even without documentation

• Easy to read and maintain code that uses it

• Hard to misuse

• Easy to extend

• Appropriate for the audience

• Sufficient powerful to satisfy requirements

Each of these items is equally important. We address the first three
items with a clean, defined State Machine concept our API is based
upon.

A State Machine is a mathematical model to describe a sequential
logical process [14]. It consists of a finite amount of states and tran-
sitions between these states. Transitions are connections between two
states that are triggered by events. The State Machine can only be in
one state at a time this state is called current state. Whenever a tran-
sition event for the current state is reached, the machine changes to
the state defined in the corresponding transition (see Figure 15).
This concept allows us to define the functionality provided by the

framework as a simple sequential process. The framework provides
different states like a grasping state or a searching state. In addition,
it provides a mechanism to introduce transitions between states (up
to two states). This allows us, for example, to have states with or with-
out error condition and states that end the computation because they
do not have a transition.
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The trigger for a transition in the framework is state dependent.
An object recognition state, for example, triggers a transition after the
recognition while a pick state triggers a transition after an executed
grasp. The concrete transition that is chosen by the trigger depends
on the state (successful vs. failed grasp transition).

Having this simple State Machine based concept as the base of the
framework decreases the learning effort for the user, as the user just
needs to know the different implemented states and developers are
normally familiar with State Machines in general.

The framework is also designed around the idea that a misuse re-
sults in direct feedback to the user. It relies programmatically on as-
serts and exceptions that express the misuse in a clear and meaningful
error message. The user knows when she or he violated a contract of
a method and how to fix this violation.

Besides of that, it shows internal exceptional state, like a missed
grasp because of inaccurate perception on the face of the robot
(see Section 2.4.5), so that a user can see this exceptions during the
tests of a prototype. However, this is not only relevant for the user
but also for the person who watches a demo as it makes the behavior
of the robot easier to understand for humans.

The extensibility of the framework is directly inferable from the
basic State Machine concept. It is easy for a user to create another
state that either encapsulates many existing states to a higher level
state or to create a complete new state. The framework offers here
object oriented extension mechanisms like abstract classes to work
with, defining the interface needed to integrate the new state into
the existing framework. In addition to this state extension some state
offer a more lightweight extension mechanism through the altering of
their internal behavior. So it is for example possible to alter a grasping
state from a simple block grasp to a more sophisticated grasp without
introducing a new state.

Testing if a framework is appropriate for a user and powerful
enough for the requirements of users is something that needs the in-
troduction of the framework into daily development processes. While
we believe that the framework is a good choice for our target audi-
ence, time is needed to evaluate this assumption. Nevertheless, the
framework is extensible and simple, so that adding functionality for
new requirements should be easy manageable.

2.6 summary

This chapter gave an introduction to the robot, explained the chal-
lenges that are involved in the project and introduced the frame-
work design fundamentals. We described not only the challenges but
also the theoretical approaches that solve these issues. The concrete
challenges discussed were Arm Movement, Multi-arm coordination,
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Perception, Manipulation and Human Robot Interaction. Arm Move-
ment included the problem of IK and collision-aware motion planning
and the solutions of IK solving and sample-based motion planning.
Multi-arm coordination comprised the reason for favoring sequential
over parallel arm movement and the solutions for the two different
motion problems that occur with sequential arm motion. The Per-
ception section discussed challenges in object recognition and our
approach that uses markers to solve these. Finally, Manipulation and
Human Robot Interaction addressed more complex topics and the so-
lutions like the used HRI primitives or the combination of perception
and motion to construct complex manipulation behavior. The frame-
work design foundations are based on the concept of a State Machine
and try to aim for simplicity and clarity rather than the implementa-
tion of rarely used complex features.





3
F O U N D AT I O N S

In this chapter we introduce the general concepts and tools used in
our work. This provides the background needed to understand the
details of our implementation. These details are independent from
the project itself and often relate to the Robot Operating System or a
certain library of it.

3.1 robot operation system

The Robot Operating System (ROS) is an open source meta operat-
ing system based on Linux that has the goal of making the work
with robots easier through a better way of sharing and collaborating
during robotic research. To accomplish this goal ROS provides some
important features to simplify the work with a robot [23].

• It provides a hardware abstraction layer for the robot

• It provides core functionality like algorithms for movement and
perception most robots need

• It provides a communication infrastructure for the different pro-
grams that are running on a robot

• It provides tools like visualization and simulation that simplify
the development process

• It provides a way of easy extending the frameworks capabilities

It is licensed under the BSD license and is used by various compa-
nies and researchers on different robots around the world.

It is important for the reader to have an idea of the basic concepts
of ROS, to understand the main points of this thesis. For that purpose
we provide here a short overview. For a more complete documenta-
tion please look at http://wiki.ros.org/.

Conceptually, ROS is a distributed system that is running on the
robot. This design leads to multiple programs running on the robot
at every point in time. That means that on a Baxter robot the pro-
grams for capturing the IR-Sensor data, the program that reads the
different joint values and many other programs getting started and
run in parallel.

To communicate between each other these programs use the net-
work (Transmission Control Protocol (TCP)/Internet Protocol (IP)) and
exchange data structures called Messages. These data structures are

25
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much like the structures in the C programming language and can en-
compass other structures or primitive data types like Integers, Floats
or Booleans. As C structures, these Messages are also extensible
through custom Message types what leads to a flexible interchange
format. ROS offers three kinds of communication techniques based on
these Messages.

First, there is a many to many communication trough programs
called Nodes1 (Figure 16). Nodes work as Publisher or Subscriber.
They communicate over a message queue called Topic. A Topic is a
message queue with an address in the form
/[namespace1]/[namespace1]/[name] where namespaces are optional.
The Publisher sends a message to a certain Topic and the Subscriber
can subscribe to that Topic and read the Messages published. A Node
is not bound to be either a Publisher or Subscriber and can act as both.
Also multiple Nodes can publish or subscribe to the same Topic. A
Topic message queue is registered in the system when the first Node
publishes to that Topic and gets unregistered when the last publisher
Node is shutdown. Furthermore, a Topic can be remapped during
the start of a Node to another name. This is useful when the Topic’s
name is already used for something else on the robot.
The most common use case for Nodes is publishing or subscribing to
sensor data or processed data.

cd 1to1Node

Publisher Subscriber

Topic

Subscriber n

Topic

1

Publisher n

Topic

1

managed by ROS

Figure 16: Node Communication

Second, there is a request-reply communication trough Services
and Clients2 (Figure 17). In this model, a Client sends a request Mes-
sage directly to the Service and waits until it receives a reply. Vice
versa the Service sends the matching reply Message directly to the
Client. Because of the direct connection this is ideal for a one to one
communication as it is faster and saves resources compared to mes-
sage queues. A typical use for a Service is a short taking request to

1 http://wiki.ros.org/Nodes

2 http://wiki.ros.org/Services
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another program, for example to test if the robotic hand is currently
gripping.

cd ServiceCommunication

Serviceclient Service

11

request

11
result

Figure 17: Client Service Communication

Last, we have asynchronous request-reply communication based
on the actionlib3 interface (Figure 18). This is a specialization of
service-based communication and deals with the disadvantage of
the waiting client. In contrast to a normal service call, the Action-
client does not wait for the reply and can continue its work. The
Actionservice notifies the Actionclient when the action is done and
also provides it with feedback during execution. In addition, the
Actionclient can cancel the running action any time. This makes the
actionlib interface useful whenever we have to execute a long taking
task like moving an arm or manipulating an object in contrast to the
blocking Service interface.

cd ActionserviceCommunication

ActionserviceActionclient

1 1

calls

1 1

cancels

11

result

11

feeback

Figure 18: Actionlib Communication

Besides of the conceptual view, ROS uses different mechanisms to
describe the nature of the robot it is currently working with.

To begin with, the Universal Robot Description Format (URDF) spec-
ifies the robots physical appearance and its kinematic properties. It
comprises joints, links and collision geometries and the connection
between these. In addition, it defines the coordinate origin for each
of the links relative to its parent link. It is the most important file for

3 http://wiki.ros.org/actionlib
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Figure 19: Two different tf frames of the robot. The position of the object can
be specified relative to the end effector’s frame.

any kind of movement executed on the robot, as all ROS dependent
APIs rely on its information.

Furthermore, ROS uses different coordinate systems called transfor-
mation (tf) frames. This concepts makes spatial planning often easier
because it allows to compare poses relative to a certain tf frame. This
allows, for example, to compare the orientation of an object on a table
relative to the orientation of the end effector telling us how to rotate
the end effector to grasp the object (see Figure 19).

Note, that the position of the end effector can change. The origin of
the tf end effector frame relative to the tf world frame is therefore time
dependent. In other words, the distance and orientation between
the tf world and the tf end effector frame can change in every time
step, invalidating the old position. This is why an accurate clock
synchronization between robot and controlling host is needed as
the evaluation of the tf data is done on the controlling computer. A
difference between computer and robot clock results in tf frames
seeming too old for the controlling computer causing it to ignore
the frame. Finally, to convert one tf frame to another ROS offers a tf

Package that includes fast reliable conversions mechanisms usable
through the Python and C++ API. These mechanisms provide for a
given pose in a source frame any representation in another frame.

An important point is that using Baxter together with ROS is
that the Research Software Development Kit (RSDK) is nothing else
than a collection of different Nodes, Services and Actionservices
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provided by Rethink Robotics. Functions included in these Nodes
are, for example, the configuration of cameras or simple Nodes for
controlling movement.

Viewing it from an administrative view ROS is a collection of tools
to run programs on a robot. This means especially that every ROS

program is either a C++ or Python program compiled with GNU
Compiler Collection (gcc) or interpreted by a normal Python runtime.
To run this programs on the robot, we invoke the rosrun command
that loads our program to the robot and executes it. As we might
want to start many programs in parallel ROS offers a XML dialect
called Launch files that allows us to write a start script executing all
these programs in the right order with the right parameters. We have
apart from these fundamental tools, various other tools for debugging
and maintaining our ROS programs. To mention is here RVIZ as it is
used on a daily basis for robotic simulation. It allows to explore the
world as the robot perceives it (see Figure 20). We used it during our
work to debug or simulate scenarios or to get an overview about the
various states of the robotic hardware.

Figure 20: Simulated robotic environment

Finally, we would like to emphasize that ROS programming always
needs to take into account the performance and concurrency of the
processes running on the robot. We always have to keep in mind
that ROS is a parallel system that has many components that need to
run almost in real time. It not only contains parallelism on the Node
level but also on the thread level. Every ROS program comes along
with multiple threads for callbacks, helper tasks and related things.
Therefore, the programmer has always to consider the various syn-
chronization and speed factors that are needed to get the Node work
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fast and correctly. This includes many parallel data structures like for
concurrent lists or lock free queues and optimization techniques like
for example move constructors or copy and swap in C++.

3.2 ar track alvar

AR Track Alvar is an open source library that provides fast object
recognition through fiducials [24]. Fiducials or markers are print outs
looking much like a QR-Code. They have a special structure that
makes it easy for the common object recognition algorithms (see Sec-
tion 2.4.3) to find them inside an image or camera stream.

First, they have a clear border that detaches the marker from the
outside world. Second, inside this border there is a unique pattern
that is easily recognizable by the image recognition algorithms as it
provides clear edges. Third, the AR Track Alvar library knows the size
of the marker helping it to transform the 2D image coordinates to 3D
world coordinates.

Figure 21: Four fiducials with a one
dollar coin as size reference

That is why, if there is a
Marker on the camera image,
AR Track Alvar provides us with
the pose of the marker relative
to the cameras tf frame. How-
ever, it has some restrictions that
apply to the marker size, to the
environment the marker is used
in and to the angle of the cam-
era. The library automatically
discards markers that seem too
large or too small in the image.
As we can control the size of the
marker in the image we need to
pay attention to not move the
arm cameras to close or to far
away from the marker. In addi-
tion, the library only works well when the border of the marker is
clearly recognizable. As the marker recognition library converts the
image in the first step to a bitonal (black and white only) image, the
borders need to have high contrast difference to the background. Typ-
ical ways to control this is to create a white background for each
marker and to control the illumination conditions.

Finally, the angle of the camera is important for the pose estima-
tion. As the pattern is only 2-dimensional, the pose estimation works
best when the camera has a 45 degree angle to the marker. Having
a 90 degree angle works also well for translation although it is less
accurate for the orientation [24][46].
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3.3 moveit!

MoveIt! is the standard manipulation framework in ROS [29]. It is de-
veloped by the Willow Garage team as an industry version (called
ROS-industrial) and as an Open Source version. The Open Source
version encompasses many different ROS Packages including the fol-
lowing functionalities:

• Motion planning adaptable for many robots

• Flexible environment representation

• Manipulation primitives adaptable for many robots

The adaptability of the library is based on different assumptions.
First, the position of every joint in the robot needs to be known and
published to the /joint_states Topic. Second, the tf frame of every link
needs to be published into the tf tree of the robot. Third, all collision
geometries of the robot need to be specified in the URDF. Once a robot
meets this assumptions, the library can be configured for the robot.

Each robot configuration is a ROS Package including a config folder
with a Semantic Robot Description Format (SRDF). The SRDF is the
MoveIt!’s main config file, grouping joints and an end effector to-
gether into planning groups for motion planning and defining the
collision matrix of the robot. Besides of the SRDF MoveIt! encompasses
other config files, for example, specifying the physical constraints of
the robot (joint_limit.yaml) or the properties of the IK-Solver (kinemat-
ics.yaml).

Motion planning is based on an IK-Solver, the Open Motion Plan-
ning Library (OMPL) [30] and the Flexible Collision Library (FCL) [22].
While the IK-Solver is either a general IK-Solver [28] or a robot specific
IK-Solver, OMPL and FCL are fixed components used for the motion
planning algorithms.

The OMPL contains several state of the art sample-based motion
planning algorithms. Depending on robot, planning constraints and
planning environment each algorithm performs different. A typical
distinction can be made between graph-based and tree-based plan-
ners. Tree based planners are due to their reduced overhead better for
planning in changing environments where the graph would be soon
invalid, while graph based planners are better for planning many
plans in a fixed environment reusing the same graph.

The FCL provides the collision checking interface for the OMPL. It
handles self-collisions as well as collisions with the environment. Ev-
ery motion plan created by MoveIt! is calculated by both libraries
together.

The environment is organized internally by MoveIt!. However, we
can easily alter it by publishing messages to the /collision_object topic.
Through that, we can add, update and remove objects in the envi-
ronment of the motion planner without thinking about the internal
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structure. The published objects are considered during motion plan-
ning and visualized in RVIZ.

MoveIt! defines pick and place primitives. This means, picking and
placing of objects is supported assuming that the robot exposes the
needed information and, in the case of picking, a grasp Message is
provided. The grasp Message encompasses the same information as
described in Section 2.4.4 and needs to be calculated manually by the
user of the pick and place functionality.

3.4 design patterns

A common approach to write robust and flexible software is the use
of Design Patterns. A Design Pattern is a well-known solution to
a standard problem. However, not every solution to a well-known
problem is directly a Design Pattern. To become a Design Pattern
the solution needs to be formalized and needs to have the essential
elements as described by [11]:

1. The pattern name describes the problem

2. The problem statement states where to apply the pattern

3. The solution describes the design, relationship and the collabo-
rations of the pattern

4. The consequences describe the pros and cons of the pattern

The solution can be expressed differently based on the application
domain of the Design Pattern. Well-known Design Patterns exist for
example for the parallel design application domain or for the object
oriented design domain. We use in this work only object oriented design
patterns formalized by the use of a Unified Modeling Language (UML)
class diagram that describes the different classes of the Pattern as well
as their communication.

The common Design Patterns that we know today in object ori-
ented design are already 20 years old and were made popular by the
famous book Design Patterns [11]. With the introduction of these Pat-
terns into software systems over the last 20 years software become
more stable and easier to understand because they did not only solve
the specific problem they were designed to, but also became common
vocabulary for developers to use. This means, that most software en-
gineers know how a specific component of a system works just by
hearing the name of the Design Pattern the component is designed
upon. This is especially useful in a framework that needs to be easily
understandable and extensible.

In consequence of this advantages we designed our core system
around several Design Patterns that are described in this chapter.
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cd Singleton

Singleton

Attributes

- otherData

- static uniqueInstance

Operations

+ operation()

+ static instance() return 
uniqueInstance

Figure 22: Singleton Pattern

The first Pattern we use is the Singleton Pattern (see Figure 22). The
idea behind the Singleton Pattern is to have an object that we can only
instantiate once. This leads to the following advantages:

• The object is easy accessible

• The object only occupies memory for one instance

• The object can be specialized through polymorphism

While some argue that the Singleton is nothing more than a global
variable, it has some improvements over a global variable. First, we
are able to introduce access restrictions into a Singleton easily. Second,
the instantiation and destruction is clearly defined and we are certain
to always receive a probably instantiated variable. Third, it is easier
to refactor a system that uses a Singleton, when more objects of the
same instance are needed compared to refactoring a system that uses
a global variable. This is a result of the clear access pattern a Singleton
defines.

A typical example for the usage of such a Pattern is the control of
an input device such as a keyboard as they usually is only one input
device connected to a computer.

The next pattern we use is the Strategy pattern (see Figure 23).
The idea behind this Pattern is to define interchangeable algorithms
during runtime.
It offers the following advantages:

• We can define a group of algorithms that are interchangeable

• We can encapsulate each algorithm of this group

• We have an increase in flexibility through the different algo-
rithms in the groups
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cd strategy

Context

Attributes

Operations

+ ContextInterface()

Strategy

Attributes

Operations

+ AlgorithmInterface()

Context

m

Strategy

n

ConcreteStrategyA

Attributes

Operations

+ AlgorithmInterface()

ConcreteStrategyB

Attributes

Operations

+ AlgorithmInterface()

ConcreteStrategyC

Attributes

Operations

+ AlgorithmInterface()

Figure 23: Strategy Pattern

A good example for the use of the Pattern is the use of different
decompression algorithms in an unpacking program. While the rep-
resentation of the result remains the same, we can define different
strategies to decompress zip, tar or rar files.

Another Pattern used is the Template Method Pattern (see Figure 24).
This Pattern is used to defer some stages of an algorithm to subclasses
reducing the amount of implementation for similar algorithms. It has
the following advantages:cd templateMethod

AbstractClass

Attributes

Operations

+ templateMethod()

+ virtual  primitiveOperation2()

+ virtual primitiveOperation1()

ConcreteClass

Attributes

Operations

+ virtual primitiveOperation1()

+ virtual primitiveOperation2()

templateMethod():
  ....

   primitiveOperation1()  
 ....

   primtiveOperation2()
 ....

Figure 24: Template Method Pattern

• reduces the amount of code needed to implement familiar algo-
rithms

• allows the definition of a skeleton of an algorithm that is can be
further specialized

• decouples algorithm interface and concrete implementation

An example scenario uses the Pattern to define a generic trans-
formation of a file. In such a case, the base class defines a concrete
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method transform(file) and abstract methods for reading, transform-
ing and writing the file. The transform method comprises then calls
to reading, transforming and writing without knowing about the
concrete implementation. As a result, different transformation algo-
rithms can be used with the same interface.

3.5 readers writers problem

In Computer Science the Readers Writers Problem describes a synchro-
nization problem in concurrent programs. In this problem, a data
structure is accessed by readers and writers. However, a simultane-
ous access of a reader R and a writer W can lead to a corruption of
the data read by the reader. If for example R counts the elements in
a vector and W deletes the first element after R has already passed
it R ′s data is corrupt. Solving this problem with a primitive Mutex
that locks the critical section seems straight forward but leads to a
performance problem (first Readers Writers Problem). Now each reader
has to enter the section sequentially although multiple reader in the
critical section are not a problem [31][pp. 215-217].

Table 1: Boost synchronization primitives

primitive description

boost::shared_mutex A mutex that is usable for mul-
tiple readers and a single writer.
It lets the Operating System de-
cide who acquires the lock next
and is therefore not vulnerable
to reader or writer starvation.

boost::shared_lock<Mutex> A lock that blocks only when it
is not possible to receive shared
access from the Mutex. Oth-
erwise it allows multiple pro-
cesses access.

boost::unique_lock<Mutex> A lock that blocks until it gets
exclusive ownership of the Mu-
tex allowing the lock holder to
be certain to operate exclusively
in the critical section.

Addressing this performance issue by allowing multiple readers in
the critical section does however rise another problem. In this case,
a writer might never enter the critical section and starves because
the lock is always hold by one of the readers (second Readers Writers
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Problem). Therefore an optimal solution to this problem requires the
following conditions:

• Read and write actions are performed sequentially

• Multiple reader can enter the critical section at once

• The writer waits no longer than absolutely necessary

To achieve this condition we use the boost locking primitives in our
project (see Table 1).

These primitives have the advantage to operate on a higher level
than normal operating system synchronization mechanisms do and
allow therefore a simpler approach to the problem. Furthermore, the
boost synchronization is used in thousands of products and is well
tested compared to a custom implementation.

Regarding the Readers Writers Problem the boost::shared_mutex is now
used to establish a fair locking mechanism. Every method that reads
data from the data structure acquires a boost:shared_lock allowing mul-
tiple readers. Every method that writes data to the structure acquires
a boost:unique_lock to get exclusive writers access to the data (see List-
ing 1).

Listing 1: Solving the Readers Writers Problem with boost primitives

boost::shared_mutex m;

void reader()

{

// get shared access

boost::shared_lock<boost::shared_mutex> lock(m);

//do Stuff below

....

//locks get automatically freed through their destructor

}

void writer()

{

// get exclusive access

boost::upgrade_to_unique_lock<boost::shared_mutex> uniqueLock(m

);

//do Stuff below

....

//locks get automatically freed through their destructor

} �
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3.6 construction vs . usage

A concept that we use in our design process is that we separate the
system construction from the usage as described by Robert C. Martin
in [18][154].

The idea is to remove the dependency from high-level components
on concrete low-level components by introducing indirection into the
instantiation process. This is useful as the high-level component is no
longer responsible for the instantiation of its low-level components
enabling us to replace the used low-level components without chang-
ing the high-level component itself. The only thing we have to con-
sider is that our replacement satisfies the same interface as before.

Another advantage is that we remove the wiring code out of the
business logic what leads to a more compact and easier to under-
stand application code. A typical implementation of this idea are the
various dependency injection frameworks like Spring 4 or Guice 5.

To demonstrate this idea and its advantages consider Listing 2.

Listing 2: Introducing tight coupling through a violation of Construction vs.
Usage

class GraspState: public State{

//other methods

....

State getNextState(){

//constructing a new state

PlaceState state(object, environment,arm);

return state;

}

} �
This is a violation of the Construction vs. Usage principle as the

PlaceState is constructed in the GraspState. The disadvantage is that
the GraspState is now directly dependent on the PlaceState class al-
though the getNextState() method returns a parent State object. While
might after grasping follows picking in the current application this
design does not allow later changes of the state returned by get-
NextState(). In addition, we introduce not only dependencies to the
PlaceState but also to all its constructor arguments.

While this is a relative easy example to illustrate the principle many
applications have such instantiation dependencies in some methods
introducing unnecessary dependencies.

To not create such dependencies all our designed ROS Nodes follow
a strict separation of construction and usage. Therefore, all instantia-

4 http://spring.io

5 https://github.com/google/guice
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tion and object wiring is done in the main method of a Node. After-
wards the actual program logic is invoked by calling a method on an
object of the now wired object graph.



4
S Y S T E M A R C H I T E C T U R E

The system architecture is based on the framework design fundamen-
tals described in Section 2.5. As already discussed, the key concept
behind the framework is a State Machine. However, transferring this
abstract concept to a technical ROS design requires more effort, since
the State Machine relies on different low-level features as described
in Section 2.4.

Consequently, these low-level features need to be designed in such
a way that they integrate well into the State Machine and the frame-
work. Hence, our system architecture comprises several ROS Packages
defining the lower level features and a separate ROS Package for the
State Machine itself (see Figure 25). Dividing the features into dis-
tinct ROS Packages leads to clear benefits in the overall design be-
cause monothematic Packages are easier to maintain and extend due
to the clear boundaries on the interface level and the associated re-
duced complexity [23]. Similar approaches for complexity reduction
exist for example in Java through the Package system and in Python
through the module system. In addition, distinct ROS Packages ensure
that using the low-level functionality separately is possible.

The following sections describe the different ROS Packages, their
design and their usage. The final section describes the State Machine
Package and illustrates the integration of the low-level functionalities
into the Package. Note that the UML diagrams use the following color
code: yellow is a public framework class, blue is an internal class
and green is a class useful for extending the current framework’s
capabilities.

Framework
Internal Layer

Framework 
Extension Layer

Framework
Usage Layer

acamp_moving acamp_perceiving

acamp_planning

acamp_faces

acamp_gripper_state
_publisher

acamp_gripper_fixed
_environment

Figure 25: Framework structure

39
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4.1 acamp_moving

The acamp_moving Package comprises every functionality relating
to the movement of the arms. It encompasses one ROS Node and a
complete interface for basic collision free operations with the arms of
the robot. However, it does not include manipulation functionalities
like picking and placing because they rely on several other things
such as perceiving and planning (see Section 2.4.4).

The Package is designed around the MoveIt! library (see Sec-
tion 3.3). We have chosen MoveIt! because it is the standard motion
planning library for ROS including well tested and up to date algo-
rithms. In contrast, other motion planning libraries evaluated were ei-
ther outdated (e.g. ROS arm navigation) or missed important features.
For example, Rethink Robotics motion planning API lacks the ability
for collision aware motion planning, even though their IK-Solver was
faster during our benchmarks.

Due to this dependency, our motion planning API is a direct exten-
sion of the motion planning API of MoveIt!. This has the advantage of
a single well defined class (BaxterMoveGroup) that contains all meth-
ods for doing movement. On the other hand, such an extension leads
to a stronger coupling between the library and the developed frame-
work. Although, this can be a problem when the library becomes
deprecated, we accepted this trade-off because MoveIt! is the stan-
dard library for movement in ROS directly maintained by ROS core
developers.

Our BaxterMoveGroup class includes additional methods that con-
figure MoveIt! for our needs. For example, The constructor specifies
the expected goal tolerances during a motion of the Baxter robot. Fur-
thermore, our class includes a direct connection to the
joint_trajectory_action_service of the arm, allowing us to execute lower
level functionality like cancelling a running motion plan. To con-
form to MoveIt!’s API, the newly introduced methods apply the typ-
ical error handling through the MoveItErrorCode class. An error code
matches exactly one error cause giving a detailed feedback.

Also contained in this Package is the grasp planning interface that
is used for manipulation. The grasp planning classes in this Package
are purely dependent on movement and assume a perfect perception
to keep the Package boundaries clear.

The purpose of the grasp planning interface is to simplify the gen-
eral grasp planning procedure and to have some functionality that re-
turns basic block grasps. Since the grasping message contains many
fields, the grasping interface (see Figure 26) works with a template
method pattern. The base class fills the fields, that are independent
from the target object but dependent on the robot, and the inher-
ited class populates the remaining fields depending on the target ob-
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Listing 3: The BlindSearchGoal message that defines the searching rectangle

# the lower right corner of the rectangle

geometry_msgs/Pose startPose

std_msgs/Float32 width # in meter

std_msgs/Float32 height # in meter �
ject. So, the grasp message is adaptable for many different geometries
without the urge to calculate redundant fields again.

Finally, the Package also encompasses a Node (blind_search_node)
that moves the cameras around for searching tasks. The idea behind
this Node is to cover every visible point of a rectangle with the cam-
eras while another Node checks the camera stream for recognizable
objects. For that reason, the Node exposes an Actionservice (see Sec-
tion 3.1) that expects a request containing the rectangle to cover (see
Listing 3).

After receiving such a request, the Node searches depending on the
start mode with one or both arms trough the rectangle. To reduce the
collision potential of the arms (see Section 2.4.2), each arm monitors
a distinct area during multi-arm search.

To stop the search, another request to the Actionservice is sufficient
(see Figure 26).

4.2 acamp_perceiving

The acamp_perceiving Package encompasses the functionalities to
transform raw sensor data to an object in the world. Furthermore,
it provides an interface to query for specific objects in the robot’s
environment representation.

We build our perceiving Package around the AR Track Alvar li-
brary (see Section 3.2). While other ways exist to do object recognition
in ROS, we have chosen this library because of the fiducials. Compared
to normal object recognition, fiducials are well suited for Rapid Proto-
typing approaches because they work without training or adaptation
for every object containing a marker.

The perceiving is based on two instances of the ar_track_alvar
Nodes with remapped Topics for each arm. The remapping is nec-
essary as the Nodes otherwise publish to the same Topic, making it
impossible to distinguish between the cameras that report the marker.

To process the raw data coming from the marker recognition, our
perceiving Node passes several steps:
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1. Transform the marker pose from the camera’s frame to the
world frame

2. Apply the filter to the marker data

3. Decide if the marker is valid or if it is a false positive

4. Remove markers if they are outdated

5. Merge the data streams from both hands to one valid data
stream

6. Publish a collision object for each marker

The result of this process is that a marker is only accepted if it
meets the following criteria:

• It is seen in > 5 consecutive sensor packets, to prevent false
positives

• once contained in one of the last 10 sensor packets, to remove
unseen markers

• It is seen at maximum 10 cm over the table, to prevent false
positives and the publishing of already attached markers

• It is seen at a maximum changed distance of 30cm in the last 50
sensor packets , to prevent false positives

While these steps are sufficient to detect markers and to drop false
positives, another important need is to pause perception. This need
arises because of a bug in the MoveIt! library during grasping. When
we grasp some object in the world, the framework removes this ob-
ject from the environment automatically and attaches it to the robot’s
end effector. However, as the cameras of our robot are next to the
end effector, the camera sees sometimes the already attached ob-
ject. Without stopping the perception, we would now publish two
objects: one attached and one in the environment. This would re-
sult in a collision error between the attached and the unattached ob-
jects causing a failure in the MoveIt! grasping pipeline. Therefore, the
acamp_perciving_node offers two Service calls (see Section 3.1) to start
and pause perceiving (see Figure 27).

As a result of the process above, the perceiving Node can sense
markers and publish them as objects to the environment. However,
the environment is internally managed by MoveIt! without a prede-
fined API. However, many states of the State Machine rely on some in-
formation provided by the environment. Picking, for example, is only
possible if we know the pose of the target object in the environment.
As a consequence, this Package provides a simple interface (Know-
nEnvironment class) for querying information about the environment.
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It provides, for example, methods to list the objects of the world, to
filter the world objects by generic criteria and to calculate distances
between objects. Filtering is especially important as it is often neces-
sary to exclude some objects from the result list that is processed.

An algorithm that tries to count objects on a table needs to filter out
the table itself. As this filtering can be very complex, the API provides
a generic way of filtering through predicates. Predicates can be just
Boolean functions that satisfy the specified interface, but they can also
be functors. A functor is an object that can be called as a function
[1][126]. This allows the filters to decide, based on the internal state
of the functor object what is, for example, helpful if one is interested
only in the ten nearest objects. In this example, the functor would
internally count how often it was already called and return false after
the tenth call.

Furthermore, as this class receives its data from the environment
and writes it to the different clients, it contains a Reader Writer Prob-
lem. Therefore, the methods are all synchronized by read and write
locks according to the boost solution (see Section 3.5).

4.3 acamp_faces

This Package contains an interface for HRI primitives like head move-
ment and displaying different faces. The design is oriented on the
typical design of logging frameworks (see Figure 28). Although log-
ging and the control of the head seem very different in the first place,
they share the same conceptual attributes. First, both interfaces need
to be accessible from any part of the program. Second, both interfaces
control the access to a central unique resource (logging file or head of
the robot). Third, both interfaces produce output that is only needed
for humans, and their invocations are therefore spread through many
methods.

Due to these insights, the design of the interface (FaceLogger class) is
based on a Singleton pattern like logging frameworks are. This allows
easy access to the interface from every location in the code without
most of the disadvantages of a global variable (see Section 3.4).

In addition, an easy to use interface is required for logging-like
methods due to their spreading throughout the code. Setting up such
a method invocation by instantiating objects and calling other meth-
ods before leads to a clumsy interface. Therefore the invocation of
the interface should be need exactly one line of code. On the other
side, the FaceLogger class has to publish an image to the screen what
would normally require the instantiation of the image first. A naive
workaround for this issue involves a method in the interface instanti-
ating the image that is published during the call. However, this would
create a tight coupling between the images used and the FaceLogger
class denying a user to publish another face image. Thus, our ap-
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proach is based on one single method to publish a face in the FaceLog-
ger class in combination with a collection that provides direct access
to all available standard faces. Consequently, it exist a direct access
pattern for the provided faces that allows one to invoke the method
in one line while the user has still the ability to publish its own faces
if needed. This approach is again similar to the handling of logging
levels in modern frameworks.

Finally, the FaceLogger class provides simple methods for head
movement.

4.4 acamp_planning

This Package contains the implementation of the State Machine con-
cept together with concrete states implemented and the abstraction
mechanisms allowing the creation of new states (see Figure 29). The
State Machine itself is designed around an encapsulating StateMa-
chine class. This class represents a whole State Machine that can be
executed and returns after it is in a final state. The advantage of the
encapsulation of a State Machine in an object rather than using the
beginning state directly is that it allows one to change the runtime
conditions of a complete State Machine at once. It enables a multi-
threaded approach through the running of one StateMachine object
on another thread. In addition, it simplifies the use of a State Ma-
chine, as the user only has to operate with one object instead of all
the states. The State Machine execution is simply triggered by calling
the run method of the class.

Although encapsulation of the State Machine in a class is beneficial,
a naive construction approach of such an object would lead to a large
amount of initialization code as every state needs to be initialized
before the connection between the states happens to not violate the
Construction vs. Usage principle. Therefore a builder class (StateMa-
chineBuilder) is introduced to create a StateMachine object with as few
lines as possible. Note, that this builder class does not represent the
classical builder Design Pattern as it does not comprise the abstract
builder types. It is a representation of the typical StringBuilder pattern
as found in C++ or Java, exposing an easy construction mechanism
by method chaining.
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The following list comprises the currently implemented states:

• Exploring a table (search_state)

• Focusing an object on a table (focus_state)

• Picking an object (grasp_state)

• Placing an object (place_state)

• Deciding about the arm to use to work with an object
(decide_arm_state)

• Leaving a shared area in dual arm operation
(leave_shared_area_state)

The search_state is responsible for controlling the table exploration
and is the connector between the blind_search_node and the perceiv-
ing_node (see Figure 30). The handle method of the state calls the
blind_search Actionservice and executes a search as long as nothing
is in the environment. This is necessary as it allows parallel execution
of motion through the blind_search_node while the state itself is able to
look for actual objects. In contrast, having no blind_search_node would
cause the state to block during the execution of the motion, and thus it
would not be able to look for objects. Therefore a search would never
return results. While multi-threaded approaches are able to circum-
vent this problem on the state level, they would nonetheless result
in higher synchronization effort, as the actionlib interface already en-
capsulates synchronization. Note that the cameras nevertheless rest
shortly on some fixed positions as the AR Track Alvar library works
best with stable non-moving pictures.

The search criteria itself can be adjusted by setting the desired
filter predicate on the KnownEnvironment class before calling the
search (see Section 4.2).

The focus_state is used to refine the pose of the object the robot
currently works with. While it is possible to estimate the pose of an
object with the perceiving_node, this estimation is often inaccurate be-
cause of the suboptimal angle and distance between the object and
the arm (see Section 2.4.3).

Although moving the camera closer to the object is the easiest way
to refine the pose estimation, some restrictions apply. The new po-
sition needs to have a good camera angle and respect the minimal
distance between the marker and the camera. In addition, as the end
effector has gripper fingers attached, some areas of the camera image
are obstructed (see Figure 31).

This state deals with this restrictions by moving the camera not di-
rectly over the object, but rather shifting the new position depending
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sd Sequence1

search_state KnownEnvironment blind_search_node

size()

0

search() Async

size()

0

size()

1

as long nothing is in the  

environment

stop() Async

return when  

something is in the  
environment

return to main  

program

Figure 30: A search_state as an UML Sequence Diagram

on the object in such a way that the gripper fingers do not obstruct
vision.

On the class level, this state connects perception and movement
through the use of the KnownEnvironment class and the BaxterMove-
Group class. In contrast to the search_state, motion and perception
are not executed in parallel. A sequential iterative approach is
used, moving the camera to the estimated position and checking
perception for the distance between object and camera again. This
approach is favorable because the AR Track Alvar library works best
on camera streams coming from fixed positions, and the time loss
during these relative small motions is negligible.

The third state encompassed in the default states is the grasp_state.
The handle method of this state grasps the object that is the closest to
the end effector as it is usually the most promising target. This state
handles a variety of errors that can happen during grasping, like a
missed grasp or a failure in the motion planner itself. The grasp con-
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Figure 31: Gripper fingers obstructing the view of the camera

tains all three stages as described in (see Section 2.4.4). The concrete
characteristics of the grasp are injected through a Strategy pattern
(see Section 3.4) with the abstract GraspGenerator type as a generic
strategy. This enables changing the grasp type not only by object, but
also by external state. If we need a handle grasping algorithm, we im-
plement another GraspGenerator that calculates the grasp for objects
with handles. The grasp_state itself with its logic remains unchanged.

The place_state combines MoveIt!’s primitive movements to build a
generic placing approach. During these steps, we control the move-
ment with the BaxterMoveGroup class. Each step is done in a trans-
actional way. This means it is impossible to jump from the first step
to the third if the second state yields an error. In addition, the state
comprises error handling like failing motion planning or failing con-
trollers by starting the current step one more time. This is needed as
movement and gripper hardware controllers of the robot sometimes
return a failure even though the actual action is still possible. If we
still run into the error, we change our position slightly to give the mo-
tion planner a chance in a new sampling situation (see Section 2.4.1).
Finally, when both error handling strategies fail, the state transits over
its previous transition.

As defined in the grasping_state, this state contains a generic place
strategy implemented by a strategy Design Pattern (see Figure 26).
We pass the strategy during initialization of the class, and during the
runtime it is not visible what strategy we use. This indirection allows
a framework to change the placing pose algorithm without altering
the other behaviors of the place_state, reducing the work effort needed.

The framework also includes states that are useful for operating
both arms together. These states solve two problems: first they help
to move the arms out of a specific region over the table, and second
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they help to decide with which hand a motion is executed. Note that
to use this states, both arms need to be controlled by the same state
machine.

The decision_state decides what arm is used based on two concepts.
The distance concept always favors the arm that is closer to the de-
sired pose, while our absolute position concept divides the workspace
in two disjunctive areas such that each arm is responsible for its area.
We combine these concepts in the following way. If the desired pose
is more than a threshold value away from the border of a disjunctive
area, the arm responsible for that area is used. However, if the de-
sired pose is relatively close to the border of the areas, the arm closer
to the object is used. This has the advantage of often using the arm
that is closer to the target and nevertheless having only a few situa-
tions when arm inference problems need to be solved, because every
arm has its disjunctive area (see Section 2.4.3). However, the control
could change while one arm is in the shared area, causing a potential
interference.

To solve this problem, we introduce the leave_shared_area state in
the State Machine. This state can be called whenever a switch from
one arm to the other happens. It checks if the currently used arm is
in the shared area and moves it to the middle of its core area. This
guarantees that we always have a free shared area after we switched
the operating arms.

Finally, the Package includes the necessary interface to construct
new states. The approach is thereby easy as the framework user just
needs to inherit from the TaskState base class. This inheritance pro-
vides the new state directly with access to the Environment through
the KnownEnvironment class and with the ability to move an arm
through a BaxtermoveGroup class. Furthermore, the state is usable in
any State Machine because of its polymorphism. The state can also
be completely equipped with own members. It is important to men-
tion here that C++ does not contain automatic memory management.
While the base state class destructor is virtual and frees all resources
used by it, an inherited state might needs to implement its own de-
structor.

4.5 helper nodes

The following two nodes are listed here for the sake of completeness
and contribute only internal to the frameworks design:

1. The acamp_gripper_state_publisher Package contains a simple
Python helper Node. The gripper_state_publisher Node in this
Package is used to publish the gripper states to the default topic
/joint_states where the MoveIt! expects them for planning (see
Chapter 5).
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2. The acamp_fixed_environment Package contains a helping Node
(acamp_fixed_environment) publishing the fixed parts of the en-
vironment like the table. This Node is written in Python and
publishes in a fixed interval of 2Hz to MoveIt!’s environment.

4.6 summary

This chapter described our general system design in a detailed
manner. We first introduced the general packages acamp_moving,
acamp_perceiving and acamp_faces implementing extensible core func-
tionalities such as moving, perceiving and HRI primitives. These pack-
ages are used in the framework and are directly extensible by the
user. After that, we described the acamp_planning package that en-
compasses the State Machine concept allowing a fast, reusable imple-
mentation of programs. In addition, the planning package uses the
functionality of the other packages to define some default states that
allow the user to get easily started with new programs. Finally, the
chapter named some helping internal Nodes and their purpose for
the sake of a complete API documentation.
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I M P L E M E N TAT I O N D E TA I L S

5.1 prototypes

This section describes briefly implementation ideas that were tested
during the project but were not pursued until the end. In general,
ideas were not pursued for one of the following three reasons. First,
if a better idea, more tailored for the Rapid Prototyping approach
was found. Second, if an idea’s implementation effort was too high
and it was dropped because of time constraints. Third, an idea was
desirable except that all known third party implementations were not
fully developed and a custom implementation would again result in
too much effort. This implies that some ideas listed below could be
pursued in future projects as they indeed provide some value for the
framework.

To begin with, during the analysis of the perception feature
(see Section 5.5) several other approaches were evaluated. We experi-
mented with various image processing ROS Packages. However, most
of them were old and not ported to the new ROS version and therefore
had installation problems due to the old build system (rosmake). Fi-
nally, aside from AR Track Alvar, two other approaches seem promis-
ing, the Object Recognition Kitchen of Willow Garage and the OpenCV
Library.

The Object Recognition Package is tightly coupled with the use of
a Microsoft Kinect camera. However, in our evaluation we were not
able to use the Kinect for tracking Lego pieces. Probable causes for
this were either suboptimal positioning of the camera, as we needed
to mount the Kinect on the robot, or an inadequate training of the
recognition database due to time limitations. We therefore dropped
the Object Recognition Kitchen therefore as the time and integration
effort was considered too high.

However, the Object Recognition Package might be a good idea for
object recognition assuming integration time is available. Compared
to the AR Track Alvar Library it offers more accurate depth percep-
tion and fewer restrictions regarding illumination. In addition, it al-
lows for the use of complex geometrical shapes without prior prepa-
ration through sticking a marker on them or providing the geometry
of the shapes.

The OpenCV approach was also postponed because of the limited
time frame of our project and the difficulty of use of this relatively
low-level library. For instance it offers no simple way of coordinate-

55
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frame transformation or depth perception although, it provides all
of the standard algorithms that could be used as building blocks for
these problems.

Considering the power of this low-level image processing library
operating directly on the cameras of the robot, it could be suitable for
future projects relying widely on complex information from images.
A good example for such a project would be the use of a Baxter robot
for some sort of inspection.

Second, for robotic movement Rethink Robotics API was also eval-
uated. Its IK-Solver is faster and often more accurate than MoveIt!’s
IK-Solver as it operates directly on the hardware of the robot, with-
out network latencies. Another advantage is that the IK-Solver also
performs well for planning with two arms often reporting a short
way. However, the API does not provide motion planners. This means,
that no knowledge about the environment is considered during plan-
ning leading to collisions, with object in the environment, like the
table or the Lego pieces (see Section 2.4.1). This is the main reason
we chose MoveIt! in favor of Rethink Robotics’ motion API. However,
depending on the task, Rethink Robotics, motion planning can also
be favorable, especially when collision-free planning is not needed or
realizable without a general motion planner. In such cases, the hard-
ware IK-Solver outperforms MoveIt! significantly.

During the integration of MoveIt!, the multi-arm parallel motion
planning was also tested. Despite the fact that the basic planning
worked, the resulting trajectories were often not usable for three
main reasons. First, the trajectory of each arm was too long and
often arrived at the goal after several strange and unnecessary arm
movements. Second, due to these strange trajectories, the robot
became less acceptable for human beings as it performed many
unpredictable movements. Furthermore, the robot was perceived as
much less effective because of the long trajectories. Third, the general
planning time increased, leading to a robot that often did not move
for several seconds after receiving a planning request. We therefore
moved away from the idea of parallel dual arm usage, although fur-
ther development of the MoveIt! algorithm could change our opinion.

Third, we switched from the Python API to the C++ API. The change
was mainly needed because of the use of MoveIt! as our primary mo-
tion planning library. While Rethink Robotics’ API is based on Python,
MoveIt!’s Python integration is rudimentary. It does not provide all
functionality needed as a Python function and lacks some useful re-
turn information in its Python API. The rewrite of our first imple-
mentation attempts from Python to C++ therefore gave more control
over the motion planning and enabled us to, for example, fix a severe
spline interpolation bug (see Section 5.4).
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5.2 workspace setup

The workspace setup is briefly presented in this section as it fixes
some practical problems that the default way of setting up the
workspace introduces. This section only describes the changes of our
setup as compared to the guide at:
https://github.com/RethinkRobotics/sdk-docs/wiki/Networking.

To begin with, our general folder structure is the same as the stan-
dard ROS workspace structure except that custom Nodes are aggre-
gated in an additional folder by programming language. This does
not affect the build system of ROS and is therefore a good idea for de-
velopers working with Integrated Development Environment (IDE)’s
like Eclipse, as they can now set up a workspace for a specific pro-
gramming language in this additional folder. To use this workspace
with Eclipse it is important to generate the ROS independent project
files with the command shown in the .bashrc example.

Second, we defined some aliases in the .bashrc file of our user for
often used commands (see Listing 4). Over time, this saves a lot of
typing effort and eases the daily work with the robot. The bxt alias
opens a shell completely configured for working with the robot,
removing the need to set environment variables or run setup scripts.
The other aliases simplify the start, stop and reset of the robot, allow
querying of its state, create a PDF with the recent tf frames and their
connection or set up a Node for editing it in the Eclipse IDE.

Listing 4: Aliases in the .bashrc making the work easier

BXT_WS=~/ros/baxter_ws

source /opt/ros/hydro/setup.bash

source $BXT_WS/devel/setup.bash

#

# Aliases

#

alias bxt="cd $BXT_WS && $BXT_WS/baxter . sh"
alias bxtEnable="roslaunch acamp_demo baxter_startup . launch"
alias bxtDisable="rosrun baxter_tools enable_robot .py −d"
alias bxtReset="rosrun baxter_tools enable_robot .py −r "
alias bxtState="rosrun baxter_tools enable_robot .py −s"
alias tf=’cd /var/tmp && rosrun tf view_frames && evince frames.

pdf &’

alias catkin_eclipse_generate="cmake −G \"Eclipse CDT4 - Unix

Makefiles\" �
Third, the most important change from the default installation is

the different network setup (see Figure 32). This was needed so that
the robot could not reach the Internet due to security considerations,
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Figure 32: Network setup

but could nevertheless synchronize its time over the Network Time
Protocol (NTP) as the time between developer machine and robot need
to be the same to receive valid sensor data (see Section 3.1). Further-
more, our networking should erase the need to set the IP address
after rebooting the developer machine.
To resolve these issues, our workstation runs its own Dynamic Host
Configuration Protocol (DHCP) and NTP server. The DHCP server is
configured so that it returns a fixed IP and the developer machine as
NTP server when the robot queries it during start up. Determining the
address to provide is done by binding the IP address to the Media Ac-
cess Control (MAC) address of the robot that can be found in the field
service menu. As our developer machine has two network interfaces,
one is used to communicate with the robot (eth0) while the other one
(wlan0) is used to communicate with the Internet and to keep NTP in
sync. Therefore the eth0 interface has a fixed address in the subnet of
the robot configured through ifconfig.

5.3 adaption for moveit!

MoveIt! is an excellent library for motion planning for almost any
kind of robot. However, this flexibility implies integration effort as
robotic hardware varies greatly. For example, the library needs an
exact model of the robot and its actors for IK solving and motion
planning. While this is not the first time MoveIt! has been used on a
Baxter robot1, we describe our integration approach here because it
fixes some detail problems of the former integration procedures and
was a large part of our work.

To adapt the library for the robot the following steps are necessary:

1 BaxterCPP by Dave Coleman https://github.com/davetcoleman/baxter_cpp
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• remapping the /joint_states topic to the /robot/joint_states topic

• delivering the missing robot state information to the library

• changing the URDF to contain the end effectors

• adjusting the collision meshes

• publishing the tf frames for the end effectors

• altering the controllers

• altering the joint speed

• configuring the planner and the tolerances

Starting by remapping the /joint_states topic to the /robot/joint_states
topic is important, as MoveIt! bases all motion planning on the
received joint states telling the library the joint positions. It is neces-
sary because the robot publishes the joint states to the non-standard
/robot/joint_states topic. That is the reason why we are remapping
the states in the MoveIt! launch file to enable the library to read the
states of each joint of the robot for planning. This mapping is also
used in the former integration approaches and does not influence
the robot’s general behavior as the /joint_states Topic is still present.

The next step is it to complete the published joint state information.
Since the robot has multiple different types of grippers that can be at-
tached to the end effector at runtime, Rethink Robotics decided to ex-
clude the end effector joint states from the standard joint_states topic
published. Instead, the /robot/[side]_end_effector/state includes this in-
formation in a custom Message format. However, as long as these
states are not known to MoveIt!, it ignores the end effectors com-
pletely. We therefore implemented the gripper_state_publisher Node,
which extracts the missing information from the
/robot/[side]_end_effector/state Topics custom message format and pub-
lishes it under the /joint_states topic (see Listing 5).

Listing 5: The gripper_state_publisher Node

DEFAULT_NODE_NAME = "acamp_gripper_state_publisher"

class GripperStatePublisher(object):

BASE_LINK = ’base ’
FINGER_OPEN_POSITION = 0.0095 # open position of the gripper

FINGER_CLOSE_POSITION = -0.0125 # close position of the

gripper

def __init__(self):

self._publisher = rospy.Publisher("/robot/joint_states ",
JointState)
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self._left = " l e f t "
self._right = " right "
#initialize the robots hands

self._gripperLeft = Gripper(self._left)

self._gripperRight = Gripper(self._right)

#calculate the movement range of the fingers

self._fingerJointStroke = GripperStatePublisher.

FINGER_OPEN_POSITION - GripperStatePublisher.

FINGER_CLOSE_POSITION;

#calculate the midpoint between both fingers

self._fingerJointMidpoint = GripperStatePublisher.

FINGER_CLOSE_POSITION + self._fingerJointStroke / 2;

def publish(self):

jointState = JointState()

self._createJointState(jointState, self._right,self.
_gripperRight)

self._createJointState(jointState, self._left,self.
_gripperLeft)

self._publisher.publish(jointState)

def _createJointState(self,jointState, arm, gripper):

jointState.header.frame_id = GripperStatePublisher.

BASE_LINK;

jointState.header.stamp = rospy.Time().now()

jointState.name.append("%s_gripper_l_finger_joint " % arm)

jointState.name.append("%s_gripper_r_finger_joint " % arm)

jointState.velocity.append(0)

jointState.velocity.append(0)

jointState.effort.append(gripper.force())

jointState.effort.append(gripper.force())

#transform the reported percentage to a position in SI

units

position = GripperStatePublisher.FINGER_CLOSE_POSITION +

self._fingerJointStroke * (gripper.position() / 100);

#the joints mirror each other in different directions

jointState.position.append(position)

jointState.position.append(position * -1)

if __name__ == ’__main__ ’:
rospy.init_node(DEFAULT_NODE_NAME)

gripperStatePublisher = GripperStatePublisher()

rate = rospy.Rate(50)

rospy.loginfo("publishing gripper states . . . ")

while not rospy.is_shutdown():

gripperStatePublisher.publish()

rate.sleep() �
Although one of the former approaches designed a similar Node

we decided to write this small Node again. Consequently, our Node
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removes the tight coupling with the rest of the other integration pro-
cess resulting in fewer dependencies.

Besides making the missing joint states of the end effectors avail-
able for the library, the URDF must also specify these missing joints
and their physical attributes. Otherwise, the library sees joint states
that have no physical representation and ignores them. Therefore
an updated URDF was used, including this joint information and
the collision meshes for the end effectors (see Figure 33). sloppyTo
publish this URDF file to the robot, we wrote a small launch script
that needs to run one time after powering on the robot.

Figure 33: Finger mesh

Although the previous step intro-
duces collision meshes, they were ini-
tially not used for collision checking due
to an incompatibility in the mesh models
with MoveIt!. In the model the up axis is
the Y-axis while in MoveIt! the axis point-
ing up is the Z-Axis. Therefore MoveIt!
interprets the mesh as lying on its side.

For this reason, we altered the coordi-
nate system of the mesh to mirror the co-
ordinate system of MoveIt!. This fixes a

major bug in the former integration processes causing the grippers
to not be considered for collision checking. Note, that it is especially
hard to find this bug as RVIZ uses a different mesh loading library
to display the robot visually. This loader handles the axis represen-
tations correctly leading to a seemingly correctly positioned mesh in
the simulator.

Having joint states and an URDF representation the end effectors
still miss the tf frames, which are critical for a proper motion
planning. They are important as they provide information about
how the end effectors, coordinates relate to the rest of the coordinate
systems. This information is needed to find the position of the end
effector during a move through the relation between its tf frame and
the world tf frame.
To publish the end effectors tf frames, we used a Node from that
calculates them through the information provided in the URDF.

Having a complete robot model available for MoveIt!, the config-
uration files need to be adjusted. This allows the use of the default
hardware controllers of the robot by specifying their actionservice
topics. Although, MoveIt! provide generic hardware controllers, the
usage of Rethink Robotics hardware controllers was preferred based
on benchmarking both approaches.
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During these benchmarks, Rethink Robotics’ controllers usually
reacted more smoothly to the received trajectories and were more
reliable in opening and closing the end effectors.

In the last step, the library is set up to control the robot. To verify
that the library does not send commands that exceed the physical
boundaries of the joints setting, the acceleration and velocity bound-
aries in the corresponding configuration files is necessary. Otherwise,
send trajectories can result in a faster hardware wear or might even
lead to hardware defects.

5.4 spline interpolation error

We encountered a problem in the combination of the motion plan-
ner of MoveIt! and the hardware trajectory controllers of Rethink
Robotics during this project. This problem and its fix are described
in the section below. We included this section here because it
illustrates the sophisticated interaction between the different parts
of the program that results in an executed motion. Furthermore,
this problem was very critical as it affected many executed motions
especially during manipulation tasks.

The problem appeared during the execution some trajectories, re-
sulting in stopped trajectories or endless wiggling motions. Observ-
ing the logs showed that the trajectories were not correctly executed
by the hardware as some joints reported a position constraint viola-
tion causing the joint to not execute the send position change. As
a result, the arm as a whole failed to reach the goal position and
stopped earlier or began to wiggle due to endless attempts to reach
the position.

Executing such a trajectory involves two stages. First, MoveIt! cal-
culates a RobotTrajectory message. Second, the RobotTrajectory message
is sent to the hardware controller of the robot
(/joint_trajectory_action_service) and is executed by it. The RobotTrajec-
tory message comprises the positions, velocities, accelerations and
joint efforts for each step in time of the trajectory. During the execu-
tion of such a trajectory, the hardware controller spline interpolates
between two points in the trajectory. The data points used by the
spline are here the values of each JointTrajectoryPoint (see Listing 6).

Listing 6: The RobotTrajectory message and its parts

//RobotTrajectory

trajectory_msgs/JointTrajectory joint_trajectory

//JointTrajectory

Header header

string[] joint_names
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JointTrajectoryPoint[] points

//JointTrajectoryPoint

float64[] positions

float64[] velocities

float64[] accelerations

float64[] effort

duration time_from_start // time the position should be reached �

Figure 34: A quadratic spline composed of six polynomial segments 1.

A spline interpolation is a numerical algorithm that approximates a
set of data points by a function of connected piecewise polynomials
(the spline, see Figure 34). Depending on the model of the source
function the degree of the polynomials can be chosen higher or lower.
This technique is often used for interpolation as even rapid to calcu-
late low order polynomials lead to relative small errors.

The following mathematical paragraphs are based on [32] and [25].
Mathematically a spline S of order k has the following properties:

1. S is on [xi, xi+1] a polynomial of order 6 k

2. S(xi) = fi, i = 0, 1, 2, ...,n

3. S(x) is continuous and continuously differentiable to the order
of k− 1

A spline polynomial that computes the position p at time t has then
the form:

p(t) = c0 + c1 ∗ t1 + c2 ∗ t2 + ... + cn−1 ∗ tn−1 + cn ∗ tn (1)

1 "Quadratic spline six segments" by Stamcose Own work. Licensed under Creative
Commons Attribution-Share Alike 3.0-2.5-2.0-1.0 via Wikimedia



64 implementation details

Where ci|i = {0, 1, 2, ...,n} are the spline coefficients calculated by the
interpolation algorithm. Furthermore, as we can assume that the par-
tition of our data points is uniform due to the uniform time intervals
we are interpolating on, the general error estimation for our spline is
the Lagrange Error Bound En(x), where f is the interpolated function:

|En(x)| 6
f(n+1)(ξ)

(n+ 1)!
(xi+1 − xi)

n+1 (2)

In the most basic form, the spline polynomials used to interpolate
the RobotTrajectory have an order of one. In this case, every polynomial
in the spline connects two adjacent data points with a straight line.
This calculation is based on the start and end time ti, ti+1 and the
start and end position pi,pi+1 of the motion between two points in
the RobotTrajectory.

p(t) = c0 + c1 ∗ t = pi +
pi+1 − pi
ti+1 − ti

∗ t (3)

The maximum expected error is:

|E1(x)| 6
f(2)(ξ)

2
(xi+1 − xi)

2 (4)

The next used spline is comprised of cubic polynomials (order 3).
Here, the interpolation is not only based on position and time but also
on velocity vi, vi+1, as additional information is needed to construct
the spline. The maximum error is:

|E3(x)| 6
f(4)(ξ)

4!
(xi+1 − xi)

4 (5)

The highest order spline used in the controller comprises quintic
polynomials (order 5). The interpolation needs position, velocity and
acceleration ai,ai+1 as parameters to construct the spline. The maxi-
mum error is:

|E5(x)| 6
f(6)(ξ)

6!
(xi+1 − xi)

6 (6)

The error equations show that it is in general not true that the
maximal error decreases using higher order splines. This can be
inferred from the unknown factor f(n+1)(ξ) in the error equa-
tions [25][pp. 40-48]. Since f and ξ are not known we can for
example not tell if E5(x) < E3(x) because f(6)(ξ) might be much
larger than f(4)(ξ). Therefore a higher order spline might overes-
timate the function leading to a larger error than a lower order spline.

However, the bug only appeared when the controller interpolated
linearly. Although it was impossible to calculate the exact error
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bounds as the source function f that generated the trajectory in the
first place was not documented, we inferred that the interpolation
error was too high and the joints therefore refused to alter position.
Having made this observation, it was still unclear what caused the
controller to interpolate linearly as it seemed that MoveIt! calculates
the trajectories with all necessary values for a higher order interpola-
tion. However, while it calculates position, velocity and acceleration
for all normal motions does not do this during the calculation of
straight motions (Cartesian paths) due to a bug in the library. Such
motions only contain the positions for the joints and no other values
explaining what caused the controller to do a linear interpolation.

To fix this, we introduced an additional time parameterization in
our BaxterMoveGroup class calculating velocity and acceleration for
every following Cartesian Path. As this functionality already exists
in MoveIt! for non-Cartesian Paths, it provided us with a class that
does this time parameterization given a RobotTrajectory with position
fields filled (see Listing 7).

Listing 7: Fixing the spline interpolation bug

void BaxterMoveGroup::doTimeParametrize(moveit_msgs::

RobotTrajectory& traj) {

// First to create a RobotTrajectory object

robot_trajectory::RobotTrajectory rt(

this->getCurrentState()->getRobotModel(),

this->getName());

// Second get a RobotTrajectory from trajectory

rt.setRobotTrajectoryMsg(*this->getCurrentState(), traj);

// Third create a IterativeParabolicTimeParameterization

object

trajectory_processing::

IterativeParabolicTimeParameterization iptp;

// Fourth compute computeTimeStamps

bool success = iptp.computeTimeStamps(rt);

ROS_INFO("Computed time stamp %s", success ? "SUCCEDED" :

"FAILED");
// Get RobotTrajectory_msg from RobotTrajectory

rt.getRobotTrajectoryMsg(traj);

} �
Finally, it is important to say that this fix works only in combination

with firmware version 1.0 or higher. Before this version, the hardware
controller interpolated always with a linear spline.

5.5 perceiving package

This section shows some of the implementation details of the per-
ceiving Package. While the previous sections described non program-
ming related challenges, this chapter discusses, based on the example
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of the perceiving Package, typical programming challenges solved
during this project. The concurrency, memory management and per-
formance challenges are inherent to all ROS programs because they
integrate in a distributed system.

As described earlier (see Section 4.2) the perceiving Package deals
with sensor data coming from both cameras and merges the most
reliable data into the environment while the other data is dropped.

The raw data is reported in a frequency of 10Hz and includes all
markers currently visible in the camera stream. Each camera reports
the data on its own thread allowing parallel processing of the two
data streams at once without locking, as each data stream is read-
only. Assuming that each data stream includes up to ten markers,
10ms are left to process both data streams.

To use the data, the following points needs to be inferable from it:

• is a marker visible

• is a marker no longer visible

• is the perceived pattern really a marker or a false alarm by the
library

Inferring about these three items in 10ms requires an algorithm
that does not involve large calculations. We therefore use a cache-like
data structure (see Listing 8) that allows us to deduce the first two
conditions from two simple counters.

Listing 8: The data structure used to store the raw sensor data

class MarkerCache{

struct CacheRow {

/*****

* general fields

*****/

ar_track_alvar::AlvarMarker marker;

int lastSeen;

int addTreshold;

geometry_msgs::Pose armPose;

/*****

* fields for moving average calculation

*****/

//position in the ringbuffer

int pos;

//counting until buffer is completely filled

int valuesInBuffer;

//current moving average

double movingAvg;

// for the computation of the delta used in

movingAvg calculation
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double oldDistance;

// ringbuffer for the last n deltas

double distances[BUFFER_SIZE];

};

/***

* more things leaved out for simplicity

***/

private:

std::map<int, CacheRow> markerCache;

} �
The add threshold tells us when a marker becomes visible. A marker

having this field over the threshold will be considered visible. It pre-
vents false positives as they usually only get reported for a very short
amount of time. The remove threshold tells us when a marker is no
longer visible. A marker with a lastSeen field over the threshold will
be considered invisible. The calculation of each such field includes
only one add and one if-statement to prevent overflows that were
otherwise common because of the fast frequency of reported data
points.

Although these two values cover most false positives cases, there
exists another case where the maker begins to jump through the en-
vironment because of an excessively steep angle between camera and
marker.

For this, the callback includes also two basic filter mechanisms. An
Exponentially Weighted Moving Average (EWMA) filter that is used
to reduce the influence of short term jumping and a Moving Average
filter that is used to exclude markers that jump too much.
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Figure 35: The weights of the moving average plotted for n = 15,α = 0.15,
the largest weight is for the newest datum
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The EWMA filters middle position changes while giving younger
data points a higher importance (see Figure 35). In other words, the
influence of older data points on the new position decreases expo-
nentially. Therefore, it is good to reduce short term random position
switching, as it happens because of the cameras moving while rec-
ognizing the marker. In such cases the exponential weights prevent
large jumps as the previous position data is also considered. In addi-
tion, the calculation of such a filter is fairly easy and fast (alpha is a
filter constant that is experimentally determined, in our case 0.3):

(a) Moving average calculation over a window of five elements
(TODO: falsch gerechnet)

(b) Window moved one step further

Figure 36: Calculation of a moving average illustrated

~Pnew = ~Pold +α ∗ ( ~Pnew − ~Pold) (7)

The Moving Average (see Figure 36) is used to look for long-term
jumping markers. It is calculated for the last n differences of the dis-
tances and the marker is dropped if this average difference is too
high (we experimentally determined that n = 30 is a good value).
Using the recursive formula, the calculation complexity during each
callback invocation reduces as we do not need to calculate the sum of
all 30 differences ( the w in the equations) first:

MA(t) =
1

w
∗

t∑

t−w+1

yi (8)

MA(t+ 1) =MA(t) +
y(t+ 1) − y(t−w+ 1)

w
(9)
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Note that the calculation necessitates storing the last 30 differences
as we need to know what difference to exclude from the calculation
next. For the storing of these differences a simple Ringbuffer is used.

The introduced cache structure (set<CacheWorld>) together with the
algorithms used allow us to deduce the necessary information in a
short amount of time and to reliably process the marker data. Note,
that a set is used here to keep the cache as dense and small as possible.
Having circa 1 kb marker data every 100ms would otherwise either
result in a large search effort to find the correct entry in another data
structure or in an excessive memory usage when old values are not
overwritten.

The further steps that decide upon which marker to rely are not
time critical as they work with a copy of each cache that includes
all information. Next, the content of each cache is merged in O(n)
retaining the marker that was closer to the camera. This works
because both sets of marker data are sorted by ID allowing to apply a
linear merge. Finally, the content needed is published every 10Hz to
the environment. Here, a slow rate is important as publishing to the
environment locks it for every other process including the motion
planner. Publishing too often slows the motion planner therefore
down.

5.6 summary

This chapter stated the different prototypical approaches we pur-
sued during the project and discussed chosen implementation de-
tails. With that, it illustrated common technical solutions for the chal-
lenges found in Chapter 2. The typical challenges discussed comprise:
administrative work with the robot, integrating existing libraries,
finding integration errors and implementing new Nodes. Important
points that arose from these examples are that ROS is a meta-operating
system that integrates into Linux, that the integration of third party li-
braries needs to consider the robots physical peculiarities, that debug-
ging a distributed system is a complex process and that performance
plays a key role in robotic systems.
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The Baxter robot is a relative new platform with about 500 units de-
livered to customers around the world. These customers are either
firms that try to integrate Baxter into their production environment
or academic users who start research projects with Baxter [19]. We
summarize the main points of these works in the following sections.
After that we describe where and how our work is different from the
already existing projects and research papers.

6.1 projects in the blogosphere and youtube

To begin with, Rethink Robotics mentions four customers on its web-
site that use Baxter with the manufacturing version already: GENCO,
Vanguard plastics, Keter Plastics and the Rodon Group1. We see Bax-
ter performing tasks in this firms like sorting and packing. It is used
as a work load multiplier helping with repetitive logistic tasks often
at an assembly line. All firms state that they like the ability of the
robot to work close to humans and being easily trainable by demon-
stration. However, all of these demos work with the manufacturing
version and do not include custom programs as this version is not
freely programmable.

Second, the scientific community starts first projects with Baxter. In
contrast to the commercial sector we can see a variety of non-industry
use cases being currently explored in unpublished work. The unpub-
lished work targets here fields like the use of custom end-effectors or
remote control of the robot and is often done by undergraduates in
their robotics courses. The programs are often not published and the
whole documentation consists of a video on YouTube. In contrast to
this thesis, this work uses mostly the freely available RSDK and builds
one specific program rather than a reusable framework.

Finally, some research papers involving Baxter are already pub-
lished.

6.2 research papers

Considering the academic papers currently published most of them
focus on using the robot for testing specific motion and manipulation
algorithms. The approach is different to the one taken in this thesis
having an algorithm centered rather than an user centered view.

1 http://www.rethinkrobotics.com/resources/videos/

#baxter-customer-spotlights

71
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The following papers with such an view on an specific algorithm
or class of algorithms are published:

• [15] and [2] focussed on the learning of trajectory preferences
without optimal training data. They present an algorithm that
allows Baxter to learn how to preferably carry things trough
iterative feedback from users. This algorithm is evaluated in dif-
ferent grocery store and household scenarios. These scenarios
fit in three categories.

• presented a paper [7] looking at algorithms for flexible object
manipulation aiming to identify the behavior of a flexible ob-
ject through touch only. The described algorithm implemented
on a Baxter allows him to identify stiffness characteristics of a
flexible loop.

• I. Lenz, H. Lee, and A. Saxena presented in [17] an algorithm for
robotic grasps trough deep learning. The goal of the papers was
to find the optimal grasping point for the robotic hand, using a
two stage detection system. It was implemented on a Baxter.

Those papers have nothing in common with our work as the robot
is just a tool to introduce a new general algorithmic concept in those
papers.

Finally there is a paper from D. Nunez, M. Tempest, E. Viola, and C.
Breazeal introducing a framework for building stage performances for
magic shows with Baxter. They presented their work in progress pa-
per [21] that discusses the use of the robot as an assistant for a magi-
cian. The authors pay special attention to the timing and chronology
concerns. During the performance the robot interacts with the ma-
gician in various ways, it passes for example a ball to the magician.
Also it executes a playlist of different poses during the performance.
To record a pose the authors developed an interface that enables the
magician to create poses in the zero-G mode of the robot. They also
build a program enabling them to compose multiple poses into one
big performance. This program shows a timeline and a simulation of
the robot doing the poses in the performance and the corresponding
transitions. It allows also to directly control the robot. In addition, it
is possible to stop the playback and adjust the current joint positions.
To keep the performance of the robot and the magician in sync, they
use different cues that tell the magician where the robot is currently
in its performance. The authors conclude that there are multiple fu-
ture research topics, like branching into different storylines, getting a
better production cycle or better timing between robot and human in
this field.

This paper is distinguishable from our work as they aim on a nar-
row field (magic performances) instead of our broader focus on gen-
eral prototypes. Furthermore, the problems targeted with both frame-
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works are totally different. While they focus on motion timing con-
siderations and predefined movement, we focus on random collision
aware motion planning and environment perception.

6.3 distinctive qualities of our work

Compared to the recent published projects our work contains unique
approaches.

• We aim for a faster prototyping process for many use cases in-
stead of the implementation of a new algorithm for a specific
problem

• We introduce a framework that is more easier extensible as the
programs that are published only for one purpose

• We work with random environments and provide a bridging
mechanism between state of the art perception and motion plan-
ning

• We focus on the programmer as the main user of the Baxter
robot rather than on technical aspects or on the audience of the
robot

These items have not been addressed in the current work and make
this work unique. We hope that these items simplify and speed up the
work with the robot.
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R E S U LT S & D I S C U S S I O N

7.1 results

The results of the thesis comprise qualitative and quantitative out-
comes. Hence, this chapter first discusses a methodology for analyz-
ing the quantitative aspects of the work and describes than the first
qualitative impressions gathered during the use of the framework in
this thesis.

7.1.1 Quantitative Analysis

The following quantitative experiments are able to measure the relia-
bility of the core functionality. We describe this methods but did not
implement them because of our limited project time.

• For measuring the motion planning capabilities the ROS MoveIt!
motion planning framework can be used. This benchmarking
framework works on a simulated environment and is well
known for benchmarking ROS robots.

• To evaluate the reliability of the perception, we propose the fol-
lowing experiment:

Preconditions: The marker remains on the same known posi-
tion on a table. The robot uses only one arm for perception. All
recognitions are done with the same camera resolution. The
illumination is in a defined reproducible state.

experiment: the robot moves its camera to a random position
having the marker still completely in its camera stream. Then,
the arm rests for fixed amount of time allowing the perception
to detect the marker. The benchmark gathers than the position
of the arm and the estimated position of the marker.

data analysis: The data gathered includes estimated and actual
pose. It can be used to calculate the perception reliability by
calculating the distance between estimated position and actual
position. The median value of this data series should be in
general more representative for the error than the average as
steep camera angles between camera and marker can produce
huge outliers. For the same reason, one should look for the stan-
dard derivation of the data. Besides of the distance the data can
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also evaluate the dependency between camera angles and pose
estimation accuracy. As we can alter the position of the arm
through three angles, the considered angle should be the one
between object and end effector. For the analysis a first correla-
tion analysis (e.g. person correlation) should be done to clarify
if there is a significant correlation between changes in the cam-
era angles and the pose estimation accuracy or if only distance
plays a significant role. During this correlation analysis the in-
fluence of the distance is eliminated by using the same distance
but different camera angles during the experiment.

Note, that this analysis does not measure the performance when
multiple markers are present, for that a different scenario is
needed.

• To evaluate the reliability of the grasp, we propose the follow-
ing experiment:

Precondition: The robot works only with one arm. The illumi-
nation is in a defined reproducible state. All recognitions are
done with the same camera resolution. The gripper type is
suitable for the object.

experiment: One distributes with fiducials marked objects
randomly on the table. The robot scans the table permanently,
recognizes the object and grasps it. After that, the robot moves
the object to a well defined position where it is not detected
again until it is placed on the table for another round.

data analysis: The data contains the number of total grasps as
well as the number of missed grasps. In addition, the number
of retries after a missed grasp and the time per grasp is gath-
ered. The data is than used to calculate the grasp reliability as
numberOfMissedGrasps
numberOfTotalGrasps and the average time per grasp. The

sample size is here important and should be large to get a good
representative result. As the data is nominal a standard deriva-
tion can not be calculated.

Evaluating the development speed is hardly possible with quan-
titative methods as many non quantitative values are involved. The
knowledge of the participating developer teams, the kind of problem
statement and other soft factors are not objective measurable. We pro-
pose therefore a qualitative survey across framework users that have
experiences with programming Baxter with and without the frame-
work. Therefore qualitative methods should be used here.
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7.1.2 Qualitative Analysis

The qualitative analysis should focus on the impressions the different
developers made with the framework. To gather expressive data, one
should consider three focus groups:

• Developers with experience in both the RSDK and the framework

• Developers with experience in the RSDK but not in the frame-
work

• Developers new to ROS and Baxter

This distinction allows a more detailed analysis in that the subjec-
tive experienced development speed can be analyzed with respect
to the already existing knowledge of the developer of the different
aspects of the system. We suggest doing a small survey first to get
an impression of the strengths and weaknesses of the framework.
After addressing the found problems a larger data set and more
impressions can be gathered. Iterating this process with larger and
larger feedback gives time to react to the most critical problems
without the risk of scaring too many developers away from the
product.

Figure 37: Sorted Lego
pieces after the
light spectrum
demo

Finally, the state machine concept of the
framework was first evaluated through the
implementation of three demos. The first
demo, is a sorting of Lego pieces by light
spectrum. The second demo evolved the ba-
sic state machine from the first demo by
placing the Lego pieces in boxes instead
of sorting by the spectrum. The last demo
extends the second one by introducing se-
quential multi-arm processing of the pieces.
The quality criteria applied to this first eval-
uation was the amount of code that can
be reused from the first demo to the third
demo.

The results show that large amounts of
the program logic were transferred through-
out the demos. The first demo introduces
four states, one filter and two strategies (see
Figure 38. This State Machine remains the
foundation for the other demos.

The second demo needs therefore only marginal implementation
effort as it simply introduces two changes slightly changed strategy
objects encompassing only 10 lines of code (see Figure 39). This ob-
jects change the behavior of the robot allowing it box placing instead
of rainbow sorting.
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Figure 38: Single arm State Machine used for benchmarking
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Figure 39: Changes of the rainbow placing State Machine that led to the
single arm box placing State Machine (highlighted in green)

The final change is again only marginal and allows the robot to
work with both hands (see Figure 40). Here the fundamental State
Machine is mirrored so that each arm can operate with its own. This
change only includes a new wiring of the machine without the need
of new code. We than introduce the two new states (Decide Arm
State and Leave Shared Area State) to handle the collision problems
that happen when we work with two hands sequentially. This new
states again need only a few lines of code.

The implementation effort of the second and third demo was there-
fore relatively small compared to rewriting each demo from scratch.
However, it is clear that this is a first and very specific evaluation
scenario and that further tests are needed to find more strengths and
weaknesses of the framework.
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7.2 discussion

Considering the results the project shows three main points to dis-
cuss.

First, the speed and performance of the robot during the demos in-
dicates that the current working speed of the robot is slow compared
to a human worker. However, this does not mean that the robot dis-
qualifies as a replacement for human workers as it never gets tired.
A human might outperform the robot in the short run but the robot
can work 24 hours a day without rest to obtain the same working
performance per day. Furthermore, the motion speed of the robot is
currently heavily depending on the sample-based motion planners
in MoveIt!. Projects that work with IK only motion planning achieve
higher speeds on the cost of collision-awareness. That is why fur-
ther developments in MoveIt! towards optimal path planning could
lead to a large increase in performance. One project that currently
targets this issue is the Stochastic Trajectory Optimization for Motion
Planning (STOMP) integration into MoveIt! [16]. On the other hand,
testing HRI research hypotheses is often a complex process where the
speed of motion is only a small part of complete the evaluation. Con-
sequently, in such use cases the current motion planning does not
necessarily hinder the evaluation of a hypothesis.

Second, the demo scenarios received good feedback in our first
presentation and can therefore be considered a promising approach.
However, further studies are needed to find out the level of com-
plexity that can be conveyed to the audience by something like Lego
piece manipulation. The questions that arose on the seminar did for
example often come from executives working in the electrical indus-
try being concerned about the electro statically properties and the
dexterity of the robot. Such things are hard to present with the cur-
rent approach as the Lego pieces are larger than most electrical parts
and do not require any additional safety mechanisms like antistatic
bags.

Furthermore some restrictions of the current demos harm the ap-
peal for the viewer. The Lego pieces need to lie flat on the table with
the marker facing up, an artificial constraint that is not obvious for
the viewer. The grasp angle is currently restricted to 90 degrees from
above shortening the general reach of the arm. As a result it some-
times seems that as the robot could grasp a piece but does not as it
cannot grasp in the right angle. Last, the table and the boxes used in
a variant of the sorting demo need to be on a fixed position and are
not perceived by the robot breaking the general concept of a random
environment. These restrictions are mainly because of time shortage
during implementation and should be fixed in further projects.

Finally, the first framework evaluation illustrates some framework
strengths. Due to the heavy code reuse a faster development process
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can be generally expected. However, as this first evaluation is a really
specific case, other evaluations are needed. The current test allows
no conclusion about how steep the learning curve is and only allows
limited inferences about the general adaptability of the framework
as the modeled processes were similar. Nevertheless we believe in
the framework as a good tool for an easier and faster prototyping
process because it does not require deep knowledge about all the
specific details involved in motion planning and perceiving.





8
F U T U R E W O R K

After exploring the different capabilities of the Baxter robot platform,
we suggest that this exploration should now continue in an industry
scenario. While our project showed basic low-level techniques that
can be integrated in such an industry scenario, the future work in
a concrete industry environment opens up many new research ques-
tions emerging from the nature of normal industry processes. For ex-
ample, we can then evaluate the pros and cons and the most needed
new functionalities for our current software framework. An industry
scenario provides us with the opportunity to answer our existing HRI

questions like how the movement speed of the robot influences its
perception and to ask new ones. It allows us to explore, for example,
a completely new kind of HRI in observing the social aspects arising
during such an industry integration.

As a result of this considerations we propose a cooperation with
a company that manufactures heavily specialized products in small
scale as it has most likely a demand for the robot. Such a company
is for example Dynamic Source Manufacturing (DSM)1 that expresses
interest in a collaboration with us. They are an electronics manufac-
turing service provider, offering flexible, customized manufacturing
solutions for their customers. Their service includes many electronic
production capabilities like quick-turn prototypes or volume produc-
tion with quality and reliability testing.

The manufacturing line of DSM includes an automated and man-
ual stage. The automated stage encompasses assembling Surface
Mounted Device (SMD) chips on an electrical board and is automat-
ically controlled by industrial image processing machines (see Fig-
ure 41).

The manual stage consists of equipping the product with larger
electrical parts by hand. This stage is missing the automated inspec-
tion that the first stage includes. This means it has two disadvantages
compared to the automated stage. On the one hand, the failures in-
troduced by manual work are not discovered directly but later in the
process leading to more amount of work needed. On the other hand,
it is impossible for the company to optimize the production process
based on the typical errors that are found during this inspection pro-
cess, because such data does not exist due to the expensiveness of
manual data capturing. Introducing automated inspection into the
manual stage has therefore the potential to increase the general man-
ufacturing speed and quality. That is why we see a good application

1 http://dynamicsourcemfg.com
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Figure 41: A typical automated optical inspection machine for electronic
boards

opportunity for the Baxter robot in this stage as the normal industrial
inspection machines cannot handle the size of the manual parts and
the inspection might need to include a turning and moving of the
electrical component to get a better view on the added parts.

We could imagine the following scenario for the use of the robot in
this stage. Baxter works co-located with the persons on the assembly
line (see Figure 42).

Figure 42: A possible workspace of Baxter at the DSM assembly line - the
robot would inspect the boards on the left, close to the workers
testing the functionality of the components.

It receives the components to inspect from the person that assem-
bles it. After they hand the product over to Baxter, it inspects the
product visually. It spots errors like a misalignment of the manually
mounted parts, bad solder joints or a missing part and highlights fail-
ures on its display. Finally, it categorizes the products in error prone
and flawless products for later manual control and correction. The
company would benefit from such a scenario by having an inspection
not only for the SMD stage but also for the manual stage. The appli-
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cation of the robot in this concrete scenario would also allow us to
explore new research questions like:

• How does the working process and the behavior of the workers
itself change through the presence of Baxter?

• How can the integration of Baxter be a non disruptive process
for the human workers?

• Is it possible to influence the working motivation of people
through the appearance and gestures of the robot?

• How well do the camera systems suit for visual inspection
tasks?

• How can we achieve a sufficient working speed?

.
Besides of the introduction of the robot to industry scenarios fur-

ther improvements of the framework are possible. Here, improve-
ments of the motion planning are promising. First, the integration
of an optimal motion planner like STOMP into MoveIt! can greatly
increase the performance of the robot since trajectories looks more
natural and are shorter, leading to a faster operation speed. Second,
time parameterizing motions could be an interesting feature for HRI

research. The difference between a gentle or shy slow motion towards
a person and a fast more aggressive motion is a for example a good re-
search field. This time parameterization should also be included into
MoveIt! as it is a general feature that is useful for all robots. Third,
the integration of a grasp framework for the pick actions of the robot
would increase the adaptability of the manipulation tasks. Candidates
for such a framework are MoveIt! SimpleGrasps2 and GraspIt!3 offer-
ing extended grasping behavior.

Finally, an evaluation study of the HRI capabilities of the robot with
is required. Techniques like the Godspeed questionnaire [3] are here
promising approaches to gather first data as they can quickly reveal
weak points in the perception. Furthermore, while the framework of-
fers basic primitives of HRI capabilities more complex features should
be introduced in the robot to tests its full potential. This includes
a more expressive face, for example through more features like eye-
brows or a nose and context awareness. The robot could for example
raise the eyebrow when it is confused or it could wrinkle the nose to
express anger about its recent performance.

2 https://github.com/davetcoleman/moveit_simple_grasps

3 http://www.cs.columbia.edu/~cmatei/graspit/
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